
Oligopoly: the Making of the Simulation Model

From Version 0 to Version 6a

Marco Mazzoli, Matteo Morini, and Pietro Terna

April 13, 2020

Contents

The oligopoly project: the making of the simulation model 5
1 The agents and their sets . 7

1.1 Agents and reset action . 10
1.2 Sets of agents . 10

2 Macro scheduling . 11
2.1 The scheduling mechanism at the level of the Observer . . . 11

2.1.1 The scheduling mechanism at the level of the Ob-
server: using the special action feature to modify
the parameters while the model is running 14

2.2 The scheduling mechanism at the level of the Model 14
2.3 The detailed scheduling mechanism within the Model (AE-

SOP level) . 17
3 Tools . 18

3.1 readingCsvOutput.ipynb . 18
3.2 readingCsvOutput_par_corr_BWter.ipynb 18
3.3 databaseWizard.ipynb . 18

4 Micro scheduling: the AESOP level 19
4.1 Model versions via the AESOP level in scheduling 19

4.1.1 Version 0 (GitHub: V0 sub releases tab), prelimi-
nary step . 19

4.1.2 Version 1, random production as engine (GitHub:
release V1&2) . 19

4.1.3 Version 2 (GitHub: , random production as engine
(GitHub: release V1&2) 19

4.1.4 Version 3 (GitHub: release V3) 20
4.1.5 Version 4 (GitHub: release V4) 20
4.1.6 Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book (GitHub:

versions V5bPy3, V5c, V5bP2_fd, V5c_fd, V5book) 21

1

Draft - The making of the model

4.1.7 Version 6book, the simplified Hayekian market (cur-
rently, as the master in Github, release V6 is defini-
tively named V6book) 22

4.1.8 Version 6b, with takeovers and big entrepreneurs) . 25
4.2 The items of our AESOP level in scheduling 25
4.3 Methods used in Version 6book only 26

4.3.1 adaptProductionPlanV6 26
4.3.2 planConsumptionInValueV6 29
4.3.3 setInitialPricesHM, Hayekian Market 32
4.3.4 nextSellPriceJumpFHM, Full Hayekian Market . . 37
4.3.5 nextSellPricesQHM, Quasi Hayekian Market 38
4.3.6 actOnMarketPlace 42
4.3.7 evaluateProfitV6 49
4.3.8 setMarketPriceV6 53
4.3.9 toEntrepreneurV6 53

4.4 Methods used in Versions 1, 2, 3, 4, 5, 5b, 5bPy3, 5c, 5c_fd,
5book, 6book . 54
4.4.1 makeProductionPlan 54
4.4.2 hireFireWithProduction 55

4.5 Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c 5c_fd, 5book,
6book . 58
4.5.1 toEntrepreneurV3 58
4.5.2 toWorkerV3 . 59

4.6 Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c 5c_fd, 5book 61
4.6.1 adaptProductionPlan until Version 5 61
4.6.2 adaptProductionPlan with Version 5b, 5bPy3, 5c,

5c_fd correction, 5book 62
4.6.3 setMarketPriceV3 63

4.7 Methods used in Version 4, 5, 5b, 5bPy3, 5c, 5c_fd, 5bok,
6book . 64
4.7.1 fullEmploymentEffectOnWages 64
4.7.2 randomShockToWages 64
4.7.3 incumbentActionOnWages 64

4.8 Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book,
6book . 64
4.8.1 workTroubles . 64
4.8.2 produceV5 . 66

4.9 Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book . . 67
4.9.1 planConsumptionInValueV5 67
4.9.2 evaluateProfitV5 68

2

Draft - The making of the model

4.10 Methods used in Versions 0, 1, 2, 3, 4 71
4.10.1 produce . 71

4.11 Methods used in Versions 0, 1, 2, 3, 4, 5, 5b, 5bPy3, 5c,
5c_fd, 5book . 73
4.11.1 fireIfProfit . 73

4.12 Methods used in Versions 1, 2, 3, 4 74
4.12.1 evaluateProfit . 74
4.12.2 planConsumptionInValue 75

4.13 Methods used in Version 2 only 76
4.13.1 toEntrepreneur . 76
4.13.2 toWorker . 77
4.13.3 setMarketPriceV2 78

4.14 Methods used in Version 1 only 78
4.14.1 setMaketPriceV1 78

4.15 Methods used in Version 0 only 78
4.15.1 evaluateProfitV0 78
4.15.2 hireIfProfit . 79

4.16 Other features in scheduling 80
4.16.1 setMarketPriceV1 as in WorldState, with details . . 81
4.16.2 setMarketPriceV2, as in WorldState, with details . 82
4.16.3 setMarketPriceV3, as in WorldState, with details . 82
4.16.4 setMarketPriceV6, as in WorldState, with details . 84
4.16.5 randomShocksToWages, as in WorldState, with de-

tails . 85
4.16.6 fullEmploymentEffectOnWages, as in WorldState,

with details . 86
4.16.7 incumbentActionOnWages, as in WorldState, with

details . 86
4.16.8 Macros . 89

Bibliography 90

Index 91

3

Draft - The making of the model

List of Figures

1 The representation of the schedule 8
2 Time series generated by the model. version 4 12
3 The agents (nodes), with random displacements, and links connect-

ing entrepreneurs and workers . 12
4 The outline of the model in twelve moves, particularly related to

V6book . 23
5 Case i): demand curve with 10,000 agents, εB in [−0.09, 0.01); offer

curve with 10 agents, εS in [−0.01, 0.09) 35
6 Case ii): demand curve with 10,000 agents, εB in [−0.11,−0.01);

offer curve with 10 agents, εS in [0.01, 0.11) 35
7 Case iii): (a) demand curve with 10,000 agents, εB in [−0.05, 0.05);

offer curve with 10 agents, εS in [−0.05, 0.05) 36
8 Case iii): (b) demand curve with 10,000 agents, εB in [−0.10, 0.10);

offer curve with 10 agents, εS in [−0.10, 0.10) 37

4

Draft - The making of the model

The oligopoly project: the making
of the simulation model

A subset of the model is published in Mazzoli et al. (2017) and a large set in Mazzoli
et al. (2019). This Making of reference offers the full possibility of replication of
our results, adopting the AEA Data Availability Policy.1

To reproduce the resulta reported in Mazzoli et al. (2017);, please use the code
versions at:
https://github.com/terna/oligopoly/releases/tag/V5 or at
https://github.com/terna/oligopoly/releases/tag/V5bP2_fd2or download the
zip file of
https://github.com/terna/oligopoly/tree/masterP2, running the project with
SLAPP 2.03 and control that the parameters are those of Table 1 of the paper.

Using SLAPP4, the oligopoly project is contained in a stand alone folder,
having the same name of the model.

To run the different versions of the experiments reported in Mazzoli et al.
(2019) please first of all have a look to the file runningSpecificCases.md in the
most recent release of Oligopoly or in the master branch of the GitHub.

Let us introduce the starting phase in a detailed way.

• We can launch the SLAPP shell in several ways.
1https://www.aeaweb.org/journals/policies/data-availability-policy.
2The same of V5, underlining the use of Python 2 and adding the output of the data of each

firm in each cycle; _fd as firm data.
3https://github.com/terna/SLAPP2.
4https://github.com/terna/SLAPP; SLAPP has a Reference Handbook at the same address

and it is deeply described in Chapters 2–7 in Boero et al. (2015).
Run oligopoly with the Python 3 version of SLAPP.
From its build 20170611 the oligopoly project, version 5bPy3, adopts the PEP8 style. PEP8

contains the Style Guide for Python Code and it is at https://www.python.org/dev/peps/pep-
0008/.
Due to this adoption, the reader can notice some aesthetic differences between the code re-

ported here and that listed into the files.

5

https://github.com/terna/oligopoly/releases/tag/V5
https://github.com/terna/oligopoly/releases/tag/V5bP2_fd
https://github.com/terna/oligopoly/tree/masterP2
https://www.aeaweb.org/journals/policies/data-availability-policy
https://github.com/terna/SLAPP2
https://github.com/terna/SLAPP
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Draft - The making of the model

– We can launch SLAPP via the runShell.py file that we find in the
main folder of SLAPP, from a terminal, with:
python runShell.py

– Alternatively, we launch SLAPP via the start.py file that we find in
the folder of SLAPP as a simulation shell, i.e.
6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX, from a
terminal, with:
python start.py

– Using IPython (e.g., in a Jupyter notebook) we go to the main folder
of SLAPP (or we start Jupyter notebook) from there, and we can
launch SLAPP via the iRunShell.ipynb file that we find in that main
folder, simply clicking on it.

In all cases, we immediately receive the request of choosing a project:
Project name?

• We can predefine a default project: if we place in the main SLAPP folder or
in the folder 6 objectSwarmObserverAgents_AESOP_turtleLib_NetworkX
a file named project.txt containing the path to the folder of the project we
are working on (oligopoly in our case, with /Users/pt/GitHub/oligopoly,
as an example of location), the initial message of SLAPP is:

path and project = /Users/pt/GitHub/oligopoly
do you confirm? ([y]/n):

• Resuming the explanation, we continue receiving the messages:

running in Python
debug = False
random number seed (1 to get it from the clock)

We have to enter an integer number (positive or negative) to trigger the
sequence of the random numbers used internally by the simulation code. If
we reply 1, the seed—used to start the generation of the random series—
comes from the internal value of the clock at that instant of time. So it is
different anytime we start a simulation run. This reply is useful to replicate
the simulated experiments with different conditions. If we chose a number
different from 1, the random sequence would be repeated anytime we will
use that seed. This second solution is useful while debugging, when we need

6

Draft - The making of the model

to repeat exactly the sequence generating errors, but also to give to the user
the possibility of replicating exactly an experiment.

The running in Python sentence signals the we are running the program
in plain Python. Alternatively, the message could be running in IPython.
About running SLAPP in IPython have a look the the Handbook, in the
SLAPP web site.5

• Parameters: we the parameters of the model interactively or within the file
commonVar.py.

The program sends several messages about the project parameters, via the
file parameters.py, in the folder of the project, such as commonVar.py.

The first of these messages reports the version of the project.

• The program informs us about the «sigma of the normal distribution used in
randomizing the position of the agents/nodes», e.g., 0.7; this value produces
uniquely a graphic effect, as in Figure 3.

• We introduce now time management, split into several (consistent) levels of
scheduling.

The general picture is that of Figure 1: in an abstract way we can imagine
having a clock opening a series of containers or boxes. Behind the boxes, we
have the action groups, where we store the information about the actions to
be done.6

1 The agents and their sets
We have files containing the agents of the different types. Those files are listed in
a file with name agTypeFile.txt: in our case, since Version 6b, it contains the
record entrepreneurs bigEtrepreneurs workers.

• entrepreneurs.txt lists the agents of type entrepreneurs; it reports the
identification numbers (e.g., from 1 to 10) and the x and y positions on the
screen. See above the sigma value determining random shift from the stated
positions; in this way, we can attribute close or equal positions to several
entrepreneurs having them anyway visible in the map; if necessary, we can
increase sigma:

5https://github.com/terna/SLAPP.
6The structure is highly dynamical because we can associate a probability to an event, or

an agent of the simulation can be programmed to add or eliminate one or more events into the
boxes.

7

https://github.com/terna/SLAPP

Draft - The making of the model

Figure 1: The representation of the schedule

1 -10 75
2 -10 65
3 -10 55
4 -10 45
5 -10 35
6 -10 70
7 -10 60
8 -10 50
9 -10 40
10 -10 30

• from version 6b we have bigEntrepreneurs.txt lists the agents of type
bigEntrepreneurs; it is created empty;

• inVersions 0 to 2, "workers.txt" list the agents of type workers, no more
used and not reported here; it would contain the identification numbers and
the x and y positions on the screen; see above the sigma value determining
random shift from the stated positions; in this way, we can attribute close or
equal positions to several entrepreneurs having them anyway visible in the
map; if necessary, we can increase sigma;

8

Draft - The making of the model

• the Version 3 of the oligopoly project uses the file workers.txtx where
the extension .txtx or eXtended text, means that the file is built following
the rule described into the Reference Handbook7, subsection ”The use of files
.txtx to define the agents”.
In version 3 the content is:

1001@11000 10 &v=10*int((n-1001)/50)+5&

that we read in the following way:

– 1001@11000 as the order of creating 10 thousand workers, from number
1001 to number 11,000;

– 10 is the constant value of the x coordinate of the worker-agents;
– &v=10*int((n-1001)/50)+5& is a formula calculating the y coordinate

of each agent:
& opens and closes the formula;
v is the result of the calculation, in our case the y coordinate;
n is the number of the agent, in the sequence generated in the interval

from 1001 to 11,000.
– numbering starts from 1001 for the reasons explained at page 58.

The agents are created by ModelSwarm.py (in folder $$slapp$$) via the specific
rules contained into the file mActions.py, specific for this project (indeed, the file
is into the folder oligopoly).
def createTheAgent(self,line,num,leftX,rightX,bottomY,topY,agType):

explicitly pass self, here we use a function

workers
if agType=="workers":
anAgent = Agent(num, self.worldStateList[0],

float(line.split()[1])+random.gauss(0,common.sigma),
float(line.split()[2])+random.gauss(0,common.sigma),
agType=agType)

self.agentList.append(anAgent)
anAgent.setAgentList(self.agentList)

entrepreneurs
elif agType=="entrepreneurs":
anAgent = Agent(num, self.worldStateList[0],

float(line.split()[1])+random.gauss(0,common.sigma),
float(line.split()[2])+random.gauss(0,common.sigma),
agType=agType)

self.agentList.append(anAgent)

else:
print "Error in file "+agType+".txt"
os.sys.exit(1)

7https://github.com/terna/SLAPP.

9

https://github.com/terna/SLAPP

Draft - The making of the model

The following bullets describe how this code works.

• The number identifying the agent is read outside this function, as a manda-
tory first element in each line into a file containing agent descriptions. The
content of the agType variable is directly the name of the agent file currently
open.

• We check the input file, which has to contain three data per row. We modify
the second and the third values with the sigma correction.

Each agent is added to the agentList.

1.1 Agents and reset action

The reset (see page 15) action, working into the scheduling of the model (Section
2.2), activates the method setNewCycleValues defined, as an empty step, in the
class SuperAgent in agTools of SLAPP (folder $$slapp$$). In the oligopoly
project, that method is redefined in Agent.py. The reset action acts once in each
simulation cycle, because in our case is related only to common variables of the
simulation. The agent executing the cleaning operation is that with the identifier
(the variable number) equal to 1. If no agent has that identifier, all will be acting,
with not useful repetitions of the same task.

As a consequence, in this project pay attention that at least one of the agents
has 1 as identifier.

An important application of the reset function is in Section 4.3.1 and specifi-
cally at p. 28.

1.2 Sets of agents

The files containing the agents are of two families, the second one with two types
of files:

• files listing the agents with their characteristics (if any): in folder oligopoly
we have the files entrepreneurs.txt and workers.txt;

• files defining groups of agents:

– the list of the types of agents (mandatory); from this list SLAPP
searches the file describing the agents; as seen, in folder oligopoly
we have the file agTypeFile.txt (the name of this file is mandatory)
containing:

entrepreneurs workers

10

Draft - The making of the model

– the list of the operating sets of agents (optional); in folder oligopoly
this file is missing. Indeed we receive the message
Warning: operating sets not found.
In the file agOperatingSets.txt (the name of this file is mandatory),
with could place names of groups of agents, corresponding to files listing
the agents in the group. Project verb"school" can be used as a useful
example.
All the names contained in the file are related to other .txt or .txtx
files reporting the identifiers of agents specified in the lists of the pre-
vious bullet. The goal of this feature is that of managing clusters of
agents, recalling them as names in Col. A in schedule.xls file.

2 Macro scheduling
In SLAPP, we have the following three schedule mechanisms driving the events.

• Two of those mechanisms are operating in a macro way: one at the level of
the Observer and the other of the Model, with recurrent sequences of actions
to be done.8

• In our oligopoly code, these two sequences are reported in the files
observerActions.txt and
modelActions.txt
in the folder of the project.

The explanations are in Section 2.1 and 2.2.

• The third sequence, operating in a micro way, is the more detailed one (see
Section 2.3).

2.1 The scheduling mechanism at the level of the Observer

.

• The first schedule mechanism is described in the first file
(observerActions.txt), having content (unique row, remembering that
anyway row changes are not relevant to this group of files):

– version without pauses contained in observerActions no pause.txt,
to be copied to observerActions.txt to run it:

8The level of the Observer is our level, where the experimenter looks at the model (the level
of the Model) while it runs.

11

Draft - The making of the model

Figure 2: Time series generated by the model. version 4

−10 −5 0 5 10 15
−20

0

20

40

60

80

100

120

4

4

5

19

8

13

6

20

15

12

18

10

1

3

7

16

11

14

9

1

2

5

3

2

17

Figure 3: The agents (nodes), with random displacements, and links connecting
entrepreneurs and workers

12

Draft - The making of the model

collectStructuralData modelStep collectTimeSeries
visualizePlot visualizeNet clock

– version with pauses contained in observerActions with pause.txt,
to be copied to observerActions.txt to run it:

collectStructuralData modelStep collectTimeSeries
visualizePlot visualizeNet pause clock

The interpretation is the following.

– First of all, we have to take into consideration that the execution of the
content of the file is “with repetition”, until an end item will appear (see
below).

– collectStructuralData collects the number of workers and of en-
trepreneurs at the beginning of each period, both as a basis for internal
calculations and for the final output of the model, when two files of
data are generated.9

– modelStep orders to the model to make a step forward in time.

– collectTimeSeries collects the data of the outcomes of the simu-
lation at the end of each period, both as a basis for the action of
visualizePlot and for the final output of the model, when two files
of data are generated (with extension .csv and date and time10 in their
names).9

– visualizePlot update the plot of the time series generated by the
model (Figure 2).11

– visualizeNet update the windows reporting the links connecting en-
trepreneurs and workers, on a network basis (Figure 3).11

– pause, if any, puts the program in wait until we reply to the message
Hit enter key to continue, hitting the key ←↩ . This action is
useful to examine the graphical outputs (as in Figures 2 and 3), step
by step.

– clock asks the clock to increase its counter of one unit. When the count
will reach the value we have entered replying to the How many cycles?
query, the internal scheduler of the Observer will add the end item
into the sequence of the file observerActions.txt. The item is placed

9collectTimeSeries, visualizePlot and saveTimeSeries are contained in "oActions.py" and
are all using pandas as dataframe manager (look at http://pandas.pydata.org).

10Avoiding : into the name, for compatibility reasons with Windows
11We can use both visualizePlot and visualizeNet—strictly in this order—or only one of them.

13

http://pandas.pydata.org

Draft - The making of the model

immediately after the clock call. The end item stops the sequence
contained in the file.

– (We can also consider a potential prune item, eliminating the links on
the basis of their weight (in case, asking for a threshold below which
we cut); weights could be introduced to measure the seniority—skill,
experience—of the workers).

2.1.1 The scheduling mechanism at the level of the Observer: using
the special action feature to modify the parameters while the
model is running

.
We use here the special action feature of SLAPP, described in the related

Reference Manual (use the Index to find it). In this specific application that
feature, we implement the following definition in commonVar.py:

specialAction = "makeSpecialAction()"

with, always in this specific case,

file_modPars=False

As a consequence, the specialAction item in observerActions.txt activates
the function makeSpecialAction() in oActions.py.

If a file modPars.txt exists, the program asks us in which cycles the modified
parameters will be used.

Within the file modPars.txt we specify the internal names of the Python vari-
ables used as parameters in the model, look for them in parameters.py; an ex-
ample of use is in specialAction where the name of the variable is followed by
its new value.

observerActions with specialAction.txt contains the specialAction item;
to use that file, you have to rename or copy it as observerActions.txt.

2.2 The scheduling mechanism at the level of the Model

.

• The second file—modelActions.txt—quoted above at the beginning of Sec-
tion 2, is related to the second of the schedule mechanisms, i.e., that of the
Model. About the Observer/Model dualism, the reference is to note 8.

It contains (unique row, remembering that anyway row changes are not rel-
evant to this group of files):

14

Draft - The making of the model

reset read_script

The interpretation is the following.

– Also at the Model level, we have to take into consideration that the
execution of the content of the file is “with repetition”, never ending. It
is the Observer that stops the experiment, but operating at its level.

– reset orders to the agents to make a reset, related to their variables.
The order acts via the code in the file ModelSwarm.py.12 reset contains
the do0 variable, linking a method that is specified as a function in
the file mActions.py in the folder of the project. In this way, the
application of the basic method reset can be flexibly tailored to the
specific applications, defining which variables to reset.
In our specific case, the content of the do0 function in mActions.py
asks all the agents to execute the method setNewCycleValues. The
method is defined in an instrumental file (agTools.py in $$slapp$$)
and it is as default doing nothing. We can redefined it in Agent.py in
the project folder.
Always in our case, as explained in Section 1.1, we suppose that the
acting agent in resetting step would be that with 1 as identifier.
In our model, we clean the variables:
common.totalConsumptionInQuantityInA_TimeStep,
common.HayekianMarketTransactionPriceList_inACycle to [],
totalProductionInA_TimeStep,
totalPlannedConsumptionInValueInA_TimeStep,
totalProfit and
totalPlannedProduction,
ratioSellersBuyersAlreadySet to False
at the beginning of each step of the time.
with version 6book, a part of the code in setNewCycleValues() is
related to initialize values fo the Hayekian market, both to set prices
and the previous cycles consumption in quantity.
The code, in Agent.py is:

reset values, redefining the method of agTools.py in $$slapp$$
def setNewCycleValues(self):

the if is to save time, given that the order is arriving to
all the agents (in principle, to reset local variables)
if not common.agent1existing:

print("At least one of the agents has to have number==1")
print("Missing that agent, all the agents are resetting common values")

12Which is in the "$$slapp$$" folder.

15

Draft - The making of the model

if self.number == 1 or not common.agent1existing:

introduced with V6
V6 reset block starts hene
this part is specific of the first Hayekian cycle
where it replaces the lack of a previous value in
quantity
here, if possible, we use the price at t-2
if common.startHayekianMarket > 1:

if common.cycle == common.startHayekianMarket:
if len(common.ts_df.price.values) == 1:

previuosPrice = common.ts_df.price.values[-1] # t=2
if len(common.ts_df.price.values) > 1:

previuosPrice = common.ts_df.price.values[-2] # t>2
the code above can act only if t>1
if common.cycle > 1: # if == 1 do nothing

makeProductionPlan acts
establishing directly
self.plannedProduction and the total
common.totalPlannedProduction

common.totalConsumptionInQuantityInPrevious_TimeStep = \
common.totalPlannedConsumptionInValueInA_TimeStep \
/ previuosPrice

not in case common.cycle == common.startHayekianMarket == 1
elif common.cycle > common.startHayekianMarket:

common.totalConsumptionInQuantityInPrevious2_TimeStep= \
common.totalConsumptionInQuantityInPrevious1_TimeStep # init. in common

common.totalConsumptionInQuantityInPrevious1_TimeStep = \
common.totalConsumptionInQuantityInA_TimeStep

if common.cycle==common.startHayekianMarket+1:
common.totalConsumptionInQuantityInPrevious_TimeStep = \
common.totalConsumptionInQuantityInPrevious1_TimeStep

if common.cycle > common.startHayekianMarket+1:
common.totalConsumptionInQuantityInPrevious_TimeStep = \
common.w*common.totalConsumptionInQuantityInPrevious1_TimeStep +\
(1-common.w)*common.totalConsumptionInQuantityInPrevious2_TimeStep

!!!! here we can use also delayed values, look at !!!! in
notesOnHayekianTransformation.md

common.totalConsumptionInQuantityInA_TimeStep = 0

list of all the transaction prices in a cycle of the
Hayekian market
common.HayekianMarketTransactionPriceList_inACycle=[]
v6 reset block ends here

common.totalProductionInA_TimeStep = 0
common.totalPlannedConsumptionInValueInA_TimeStep = 0

common.totalProfit = 0
common.totalPlannedProduction = 0

ratio sellers/buyers
common.ratioSellersBuyersAlreadySet=False

troubles related idividual variables
if self.agType == "entrepreneurs":

self.hasTroubles = 0
if self.agType == "workers":

16

Draft - The making of the model

self.workTroubles = 0

– read_script orders to the Model to open a new level of schedul-
ing, described in Section 2.3. The order acts via the code of the
file ModelSwarm.py. We have here one of the stable instances of the
class ActionGroup within the Model. The ActionGroup related to
read_script item is the actionGroup100 that contains the do100 func-
tion, used internally within ModelSwarm.py to manage the script re-
ported into the schedule.xls file (or directly into the schedule.txt
one).

2.3 The detailed scheduling mechanism within the Model
(AESOP level)

.
AESOP comes from Agents and Emergencies for Simulating Organizations in

Python.

• The third scheduling mechanism, as anticipated in Section 2, operates at
a micro scale and it is based on a detailed script system that the Model
executes while the time is running. The time is managed by the clock item
in the sequence of the Observer.

The script system is activated by the item read_script in the sequence of
the Model.

• This kind of script system does not exist in Swarm, so it is a specific feature
of SLAPP, introduced as implementation of the AESOP (Agents and Emer-
gencies for Simulating Organizations in Python) idea: a layer that describes
in a fine-grained way the actions of the agents in our simulation models.

• Now we take in exam the timetable of our Oligopoly model.

• The file schedule.xls can be composed of several sheets, with: (a) the first
one with name schedule; (b) the other ones with any name (those names
are macro instruction names). We can recall the macro instructions in any
sheet, but not within the sheet that creates the macro (that with the same
name of the macro), to avoid infinite loops.

We differentiate the execution sequences in our model via the schedule.xls
sheet contained in the folder oligoply.

Within the sheet, we have the action containers as introduce above (Figure
1), starting with the sign #.

17

Draft - The making of the model

3 Tools

3.1 readingCsvOutput.ipynb

.
The readingCsvOutput.ipynb IPython sheet reads the .csv output files of

the oligiopoly runs.
The current version for the production of the book is:

readingCsvOutput_par_corr_BWter.ipynb and requires the files:

• partial_corr.py and

• labelsPositions.csv

• both at https://github.com/terna/oligopoly.

3.2 readingCsvOutput_par_corr_BWter.ipynb

.
The readingCsvOutput_par_corr.ipynb IPython works as the sheet of Sec-

tion 3.1 but adding the partial correlation calculations. BW stays for pictures also
in black and white.

The code partial_corr.py it the complement to readingCsvOutput_par_corr.ipynb
and comes from https://gist.github.com/fabianp/9396204419c7b638d38f.

The version for the book is readingCsvOutput_par_corr_BWter.ipynb.
About partial correlation have a look to http://en.wikipedia.org/wiki/

Partial_correlation#Using_linear_regression.

3.3 databaseWizard.ipynb

.
The databaseWizard.ipynb IPython sheet reads the .csv output files of the

oligiopoly runs and, via quickviz,13 easily generates graphical representations of
the content of those files. quickviz is based on seaborn14 and pandas.15

13https://github.com/chmduquesne/quickviz.
14https://seaborn.pydata.org.
15https://pandas.pydata.org.

18

https://github.com/terna/oligopoly
https://gist.github.com/fabianp/9396204419c7b638d38f
http://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression
http://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression
https://github.com/chmduquesne/quickviz
https://seaborn.pydata.org
https://pandas.pydata.org

Draft - The making of the model

4 Micro scheduling: the AESOP level
From now on we explain the micro level of AESOP, i.e., the structure of the
implementation of the Agents and Emergencies for Simulating Organizations in
Python for the Oligopoly model,

4.1 Model versions via the AESOP level in scheduling

.
We have several versions of the model defined via the sequences of actions. To

use one of them, we have to copy its schedule to the basic schedule.xls file.

4.1.1 Version 0 (GitHub: V0 sub releases tab), preliminary step

In schedule0.xls (to be copied to schedule.xls for the use) we have (comments
start at column E and are missing) three columns:
1 100
entrepreneurs produce
entrepreneurs evaluateProfitV0
entrepreneurs 0.5 hireIfProfit
entrepreneurs 0.5 fireIfProfit

4.1.2 Version 1, random production as engine (GitHub: release V1&2)

In schedule1.xls (to be copied to schedule.xls for the use) we have (comments
start at column E and are missing) three columns:

1 100
entrepreneurs makeProductionPlan
entrepreneurs hireFireWithProduction
entrepreneurs produce
WorldState specialUse setMarketPriceV1
entrepreneurs evaluateProfit
entrepreneurs 0.5 fireIfProfit

4.1.3 Version 2 (GitHub: , random production as engine (GitHub:
release V1&2)

Here we have (i) random production as engine, (ii) individual demand curves with
more realistic price determination, (iii) new entrant firms.

In schedule2.xls (to be copied to schedule.xls for the use) we have (com-
ments start at column E and are missing) three columns:

1 100
entrepreneurs makeProductionPlan

19

Draft - The making of the model

entrepreneurs hireFireWithProduction
entrepreneurs produce
entrepreneurs planConsumptionInValue
workers planConsumptionInValue
WorldState specialUse setMarketPriceV2
entrepreneurs evaluateProfit
entrepreneurs 0,5 fireIfProfit
workers toEntrepreneur
entrepreneurs toWorker

4.1.4 Version 3 (GitHub: release V3)

Here we have (i) random production only at time 1, (ii) adaptation in production
plans , (iii) individual demand curves with more realistic price determination, (iv)
new entrant firms.

In schedule3.xls (to be copied to schedule.xls for the use) we have (com-
ments start at column E and are missing) three columns:

1 100
entrepreneurs makeProductionPlan
entrepreneurs adaptProductionPlan
entrepreneurs hireFireWithProduction
entrepreneurs produce
entrepreneurs planConsumptionInValue
workers planConsumptionInValue
WorldState specialUse setMarketPriceV3
entrepreneurs evaluateProfit
entrepreneurs 0.0001 fireIfProfit
workers toEntrepreneurV3
entrepreneurs toWorkerV3

4.1.5 Version 4 (GitHub: release V4)

Here we have (i) random production only at time 1, (ii) adaptation in production
plans , (iii) individual demand curves with more realistic price determination, (iv)
new entrant firms.

In schedule4.xls (to be copied to schedule.xls for the use) we have (com-
ments start at column E) three columns:

1 100
entrepreneurs makeProductionPlan
entrepreneurs adaptProductionPlan
entrepreneurs hireFireWithProduction
entrepreneurs produce
entrepreneurs planConsumptionInValue
workers planConsumptionInValue
WorldState specialUse setMarketPriceV3
entrepreneurs evaluateProfit
entrepreneurs 0.0001 fireIfProfit
workers toEntrepreneurV3
entrepreneurs toWorkerV3 COMMENT: below an experimental step

WorldState specialUse randomShockToWages

20

Draft - The making of the model

Temporary step
to check the model
sensitivity

WorldState specialUse fullEmploymentEffectOnWages
WorldState specialUse incumbentActionOnWages

4.1.6 Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book (GitHub: versions V5bPy3,
V5c, V5bP2_fd, V5c_fd, V5book)

Version V5c_fd adds to V5c the saving with the related output file of data of each
firm in each period (production and profit).

Version V5book, for Python 2.0, adds to V5c_fd the update for NetworkX
2.0+. The name is related to the upcoming book M. Mazzoli, M. Morini, and P.
Terna (2019), Rethinking macroeconomics with Endogenous Market Structure.

The output file has name date+hour+_firms.csv.
The individual data of each firm are elaborated via the iPython program

readingCsvOutput.ipynb,16 to obtain mean and standard deviations about pro-
duction and profits. The results are very close, but the dimensionality, to those
obtained via the same program using the aggregated time series. The differences
are due to the changes in number of entrepreneurs in each period, so the calcula-
tions based on the time series use data not always homogeneous.

Version 5c continues the set of small changes introduced to version 5, now
adding the capability of changing the parameters of the simulation while the model
is running; this capability is based upon the specialAction feature of SLAPP, at
the level of the observer. See above, section 2.1.1.

Version 5b is related uniquely to a correction in method adaptProductionPlan,
as in subsection 4.6.1, now modified as in subsection ??. The schedule is unchanged
from Version 5 to 5b.

Version 5b3P is exactly the same as version 5b, but revised for Python 3
(SLAPP 3.0 or more).

NB NB NBTo replicate results calculated until May 2017, please use version
5b with SLAPP 2.0.

The differences are coming from a significant novelty in random number use.
17

16Look at Sections 3.1 and 3.2.
17Working with the example basic (via SLAPP) we can verify that a sequence of “ran-

dom.random()” numbers has the same content in Python 2 and in Python 3 if “n” in ran-
dom.seed(n) is the same.
Unfortunately, random.shuffle() behaves in a different way in the two Python versions,

as you can read at http://stackoverflow.com/questions/38943038/difference-between-
python-2-and-3-for-shuffle-with-a-given-seed and also, after a call to shuffle the succes-
sive sequence of random realizations will be different in the two Python versions.
Due to this behavior we cannot reproduce in a full detailed way a run of a project in SLAPP

working with Python 2 and with Python 3.

21

http://stackoverflow.com/questions/38943038/difference-between-python-2-and-3-for-shuffle-with-a-given-seed
http://stackoverflow.com/questions/38943038/difference-between-python-2-and-3-for-shuffle-with-a-given-seed

Draft - The making of the model

With version 5b, we added the possibility of work troubles in firms, via the
method entrepreneurs p work troubles, where p is a probability.

In schedule5.xls (to be copied to schedule.xls for the use) we have (com-
ments start at column E and are missing) three columns:

1 100
entrepreneurs makeProductionPlan
entrepreneurs adaptProductionPlan
entrepreneurs hireFireWithProduction
entrepreneurs 0.05 workTroubles
entrepreneurs produceV5
entrepreneurs planConsumptionInValueV6
workers planConsumptionInValueV6
WorldState computationalUse setMarketPriceV3
entrepreneurs evaluateProfitV5
entrepreneurs 0.0001 fireIfProfit
workers toEntrepreneurV3
entrepreneurs toWorkerV3
WorldState computationalUse fullEmploymentEffectOnWages
WorldState computationalUse incumbentActionOnWages

4.1.7 Version 6book, the simplified Hayekian market (currently, as the
master in Github, release V6 is definitively named V6book)

We experiment with the creation of a simplified Hayekian market inside theOligopoly
model, remembering Bowles et al. (2017), Boettke (1990) and Lewis (2014) as ex-
amples of relevant references to the Hayekian market analysis.

The main reference among those above is Bowles et al. (2017), absolutely worth
to be considered; from there, we report the Hayek quotation:

[The market is] a system of the utilization of knowledge which no-
body can possess as a whole, which ... leads people to aim at the
needs of people whom they do not know, make use of facilities about
which they have no direct information; all this condensed in abstract
signals ... [T]hat our whole modern wealth and production could arise
only thanks to this mechanism is, I believe, the basis not only of my
economics but also much of my political views (Hayek, 1994, p. 69).

An deep analysis of the simplified Hayekian price mechanism introduce can be
found online in the microHayekianMarket18 GitHub repository.

The Section B.3 of the document online19 in that web page contains the key
18https://terna.github.io/microHayekianMarket/
19https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/

microHayekianMarket/microHayekianMarket.pdf

22

https://terna.github.io/microHayekianMarket/
https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/microHayekianMarket/microHayekianMarket.pdf
https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/microHayekianMarket/microHayekianMarket.pdf
https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/microHayekianMarket/microHayekianMarket.pdf

Draft - The making of the model

Figure 4: The outline of the model in twelve moves, particularly related to V6book

23

Draft - The making of the model

information useful to connect that analysis and the solution proposed—in this
document—to build the Oligopoly model.

In Figure 4 we have the sequence of the events with and without the simplified
Hayekian market addendum.

To run the V6book with the simplified Hayekian model choice, we need to
introduce the feature below in the schedule. We underline that the structure of the
V6book schedule is coincident with the results of V5 if the startHayekianMarket
parameter is greater than the number of expected cycles of the simulation; the act
macro is useless in that case.

We have two possible ways of interpreting the simplified Hayekian market
model:

adopting a full Hayekian paradigm: the modification of the prices is contin-
uous, both on the side the buyers (all the agents) and of the side of the sellers
(the entrepreneurs); the frequencies of the modifications belong to two highly
different scales and as a consequence the amplitude of the price corrections
are very different with the rate of number of sellers

number of buyers
between sellers and buyers

(the action setInitialPricesHM, reported into the schedule, calculates the
ratio between sellers and buyers at the beginning of each period);

adopting a quasi Hayekian paradigm: the modification of the prices is here
continuous for the buyers, but limited to one correction per cycle (time in-
terval) for each seller.

The switch between full and quasi Hayekian paradigm operates via the pa-
rameter named hParadigm,, whose values are full or quasi. As described in the
previuous bullet points, the effect of the choice is that of enabling the way followed
by the sellers in fixing their price, after the initial step (described in Section 4.3.6).
As a side effect, setting hParadigm to any other value, we restrain the sellers from
modifying their prices.

In both cases, the function or method setInitialPricesHM set the sellers’
prices before the starting point of the Hayekian period.

In schedule6.xls (to be copied to schedule.xls for the use) we have (com-
ments start at column E and are missing) three columns:

1 100
entrepreneurs makeProductionPlan
entrepreneurs adaptProductionPlanV6
entrepreneurs hireFireWithProduction
entrepreneurs 0.05 workTroubles
entrepreneurs produceV5
entrepreneurs planConsumptionInValueV6
workers planConsumptionInValueV6
all setInitialPricesHM

24

Draft - The making of the model

macro act
WorldState computationalUse setMarketPriceV6
entrepreneurs evaluateProfitV6
entrepreneurs nextSellPriceJumpFHM
entrepreneurs nextSellPricesQHM
workers toEntrepreneurV6
entrepreneurs toWorkerV3
WorldState computationalUse fullEmploymentEffectOnWages
WorldState computationalUse incumbentActionOnWages

In schedule6.xls we have a second sheet named act containing:

all actOnMarketPlace
all actOnMarketPlace
all actOnMarketPlace
all actOnMarketPlace
all actOnMarketPlace
...

The number of repetition of the method actOnMarketPlace in each cycle is
determinate by the number of rows in the macro sheet act. Currently we have 30
or more20, until 100, rows.

In a Hayekian run, the first step (the whole first cycle, with all the sub-steps
of the macro act; the code is reported in Section 4.3.6) of the Hayekian sequence
produces a complete output of the actions (sell and buy) of the agents into the
market. The output goes to the file firstStepOutputInHayekianMarket.csv
in the folder of the oligopoly project. The file can be read and, must of all,
elaborated with the program readingFirstStepOutputInHayekinaMarket.ipynb
and it is useful mainly for internal control reasons.

4.1.8 Version 6b, with takeovers and big entrepreneurs)

The narrative of this improvement with takeovers is temporary contained into the
separate note “Pietro’s notes while building version 6b (takeover)”.

4.2 The items of our AESOP level in scheduling

.
We have several items, not all used in each version of the model.

• # 1 100 fills 100 steps of the time schedule (or any other number of
them) with the sequence below it, creating 100 (in this case) time containers.

20Increasing the number of row, we test the findings of Appendix B in the note on the Micro
Simplified Hayekian Market.

25

https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/microHayekianMarket/microHayekianMarket.pdf
https://github.com/terna/microHayekianMarket/blob/master/paperLaTeX_folder/microHayekianMarket/microHayekianMarket.pdf

Draft - The making of the model

The actual step repetition upon time can be ≤ 100; if > 100 the steps
after the 100th will be lacking of activity of the detailed scheduling activity
(AESOP layer).

4.3 Methods used in Version 6book only

4.3.1 adaptProductionPlanV6

• While we are in the pre Hayekian period, i.e., in the warming up phase of the
run of the model, the method adaptProductionPlanV6 works as the method
described in Section 4.6.2.

Indeed, the easier way to start the Oligopoly model with a Hayekian market
inside is that of warming up the model with the price setting employed
until version 5c_fd, i.e., comparing the total offer in quantity and the total
demand in value and calculating a clearing price.

After k− 1 cycles of warming, the last price is used in cycle k, considering it
to be the previous cycle price that both the entrepreneurs—as producers—
and the entrepreneurs and the workers—as consumers—remember and use
in their first step, starting to act in a decentralize market, in the Hayekian
perspective.

With t ≥ k, the methods is operating in the direction of the Hayekian market.

The entrepreneurs evaluate expected production in each period by divid-
ing the total consumptions of the previous period, measured in quantity
(prices are too heterogeneous in a Hayekian situation), by the number of
entrepreneurs.

With:

– ϕi,t as individual firm production in t;

– Cns,t−1 as one of the NCs buying actions, measured in quantity, of the
consumer s at time t− 1;

– NE as the entrepreneur number;

– ut as a random addendum (drawn from a uniform distribution to have
super-fat tails) representing the difficulty of having correct information
about all the buy actions made into the economic system;

– Q and 1−Q as the weights to be attributed to the consumption at time
t− 1 and t− 2, with 0 ≤ Q ≤ 1;

26

Draft - The making of the model

we have:

ϕi,t = Q

∑
s

∑
ns
Cns,t−1

NE

+ (1−Q)

∑
s

∑
ns
Cns,t−2

NE

+ ut (1)

The code is:

adaptProductionPlanV6
def adaptProductionPlanV6(self):

pre hayekian period
if common.cycle > 1 and common.cycle < common.startHayekianMarket:

count of the entrepreneur number
nEntrepreneurs = 0
for ag in self.agentList:

if ag.agType == "entrepreneurs":
nEntrepreneurs += 1

with the scheme of prices until V.5c_fd
if len(common.ts_df.price.values) == 1:

previuosPrice = common.ts_df.price.values[-1] # t=2
if len(common.ts_df.price.values) > 1:

previuosPrice = common.ts_df.price.values[-2] # t>2
NB adapt acts from t>1

self.plannedProduction = (common.totalDemandInPrevious_TimeStep /
previuosPrice) \

/ nEntrepreneurs

shock = uniform(
-common.randomComponentOfPlannedProduction,
common.randomComponentOfPlannedProduction)

if shock >= 0:
self.plannedProduction *= (1. + shock)

if shock < 0:
shock *= -1.
self.plannedProduction /= (1. + shock)

print self.number, self.plannedProduction

common.totalPlannedProduction += self.plannedProduction
print "entrepreneur", self.number, "plan", self.plannedProduction,\
"total", common.totalPlannedProduction

hayekian period
if common.cycle >1 and common.cycle >= common.startHayekianMarket:

#the case common.cycle==1, with common.startHayekianMarket==1, is
#absorbed by makeProductionPlan

nEntrepreneurs = 0
for ag in self.agentList:

if ag.agType == "entrepreneurs":
nEntrepreneurs += 1

self.plannedProduction = \
common.totalConsumptionInQuantityInPrevious_TimeStep \
/ nEntrepreneurs

27

Draft - The making of the model

shock = uniform(
-common.randomComponentOfPlannedProduction,
common.randomComponentOfPlannedProduction)

if shock >= 0:
self.plannedProduction *= (1. + shock)

if shock < 0:
shock *= -1.
self.plannedProduction /= (1. + shock)

print self.number, self.plannedProduction

common.totalPlannedProduction += self.plannedProduction
print "entrepreneur", self.number, "plan", self.plannedProduction,\
"total", common.totalPlannedProduction

to record sold production and revenue in hayekian phase
self.soldProduction=0
self.revenue=0

The internal variable
common.totalDemandInQuantityInPrevious_TimeStep
is updated in the following way:

– the internal variable
common.totalConsumptioInQuantityInPrevious_TimeStep
is set within the reset function in Agent.py (about reset, see Section
1.1), saving in it the value of previous step
common.totalConsumptionInQuantityInA_TimeStep, before resetting
it to 0;
the code is:

elif common.cycle > common.startHayekianMarket:
common.totalConsumptionInQuantityInPrevious_TimeStep = \

common.totalConsumptionInQuantityInA_TimeStep

common.totalConsumptionInQuantityInA_TimeStep is determined in
actOnMarketPlace in Section 4.3.6;

– we have a special case when
common.cycle == common.startHayekianMarket
and the previous value does not exist because actOnMarketPlace has
still to start to operate;
in this case we use the previous planned amount of consumption in
value,
common.totalPlannedConsumptionInValueInA_TimeStep,
transformed in quantity using prices at t− 2 using the scheme of
adaptProductionPlan (Section 4.6.2), i.e.:

if len(common.ts_df.price.values) == 1:
previuosPrice = common.ts_df.price.values[-1] # t=2

28

Draft - The making of the model

if len(common.ts_df.price.values) > 1:
previuosPrice = common.ts_df.price.values[-2] # t>2

NB the code above can act only from t>1

we underline that previuosPrice (as a local variable) can be used in
the unique case
common.cycle == common.startHayekianMarket.

– The whole specific code is:
introduced with V6
V6 reset block starts hene
this part is specific of the first Hayekian cycle
where it replaces the lack of a previous values in
quantity
if common.cycle == common.startHayekianMarket:

if len(common.ts_df.price.values) == 1:
previuosPrice = common.ts_df.price.values[-1] # t=2

if len(common.ts_df.price.values) > 1:
previuosPrice = common.ts_df.price.values[-2] # t>2

NB the code above can act only from t>1

common.totalConsumptionInQuantityInPrevious_TimeStep = \
common.totalPlannedConsumptionInValueInA_TimeStep \
/ previuosPrice

elif common.cycle > common.startHayekianMarket:
common.totalConsumptionInQuantityInPrevious_TimeStep = \

common.totalConsumptionInQuantityInA_TimeStep

common.totalConsumptionInQuantityInA_TimeStep = 0
list of all the transaction prices in a cycle of the
Hayekian market
common.HayekianMarketTransactionPriceList_inACycle=[]
v6 reset block ends here

4.3.2 planConsumptionInValueV6

• The method (or command) planConsumptionInValueV6,21 sent to workers
or entrepreneurs, plans the consumptions in value for the current cycle and
its sub-steps, using the parameters detailed in commonVar.py file.

The method is equal to planConsumptionInValueV5 one, but the conclusion.
Indeed, no update of totalPlannedConsumptionInValueInA_TimeStep com-
mon value is made after the conclusion of the pre-Hayekian period.

Consumption behavior of the agent i at time t is defined as:

Ci,t = ak + bkYi,t + ui,t (2)

with ui,t from u ∼ N (0, common.consumptionRandomComponentSD).
21Related to Version 6

29

Draft - The making of the model

The individual i can be:

1. an entrepreneur, with Yi,t = profiti,t−1 + wage;

2. an employed worker, with Yi,t = wage and the special22 case Yi,t = wcit,
with wcit defined in eq.28;

3. an unemployed workers23, with Yi,t = socialWelfareCompensation.

The ak and bk values are set via the file commonVar.py and reported in
output, when the program starts, via the parameters.py.

Finally, a quota of the unspent consumption capability coming from the
past is added to the result. The quota, with a value in the interval [0, 1],
has value reUseUnspentConsumptionCapability24 or qres and it is applied
to unspentConsumptionCapability, giving:

C+
i,t = Ci,t + qres · unspentConsumptionCapability (3)

The code in Agent.py is:

consumptions
def planConsumptionInValueV6(self):

self.consumption = 0
#case (1)
Y1=profit(t-1)+wage NB no negative consumption if profit(t-1) < 0
this is an entrepreneur action
if self.agType == "entrepreneurs":

self.consumption = common.a1 + \
common.b1 * (self.profit + common.wage) + \
gauss(0, common.consumptionRandomComponentSD)

if self.consumption < 0:
self.consumption = 0

profit, in V2, is at time -1 due to the sequence in schedule2.xls

#case (2)
Y2=wage
if self.agType == "workers" and self.employed:

the followin if/else structure is for control reasons because if
not common.wageCutForWorkTroubles we do not take in account
self.workTroubles also if != 0; if = 0 is non relevant in any
case
if common.wageCutForWorkTroubles:

self.consumption = common.a2 + \
common.b2 * common.wage * (1. - self.workTroubles) + \
gauss(0, common.consumptionRandomComponentSD)

print "worker", self.number, "wage x",(1.-self.workTroubles)
else:

22Activated if the common value wageCutForWorkTroubles is true
23In this case, if the random component exceeds the consumption coming from social welfare

compensation, we can have negative consumption; in case, in version 6book, consumption are
set to 0.

24Defined in commonVar.py.

30

Draft - The making of the model

self.consumption = common.a2 + \
common.b2 * common.wage + \
gauss(0, common.consumptionRandomComponentSD)

#case (3)
Y3=socialWelfareCompensation
if self.agType == "workers" and not self.employed:

self.consumption = common.a3 + \
common.b3 * common.socialWelfareCompensation + \
gauss(0, common.consumptionRandomComponentSD)

reuse unspent consumption capability
#if self.number==1:
print("reuse unspent consumption capability", \
self.unspentConsumptionCapability)
self.consumption += common.reUseUnspentConsumptionCapability * \

self.unspentConsumptionCapability

if self.consumption < 0:
#print(’*************************************’,self.employed, \
self.consumption)
self.consumption=0

max cons. in each step of a cycles of the Hayekian phase
self.maxConsumptionInAStep=self.consumption*common.consumptionQuota

update totalPlannedConsumptionInValueInA_TimeStep
if common.cycle < common.startHayekianMarket or \

(common.cycle == common.startHayekianMarket and \
common.startHayekianMarket == 1):
the ’or’ condition is necessary In the Hayekian perspective,
when the start is a cyce 1; the value of
common.totalPlannedConsumptionInValueInA_TimeStep is necessary
in the warming phase: look at the ’else’ within
the second block in setInitialPricesHM

common.totalPlannedConsumptionInValueInA_TimeStep += self.consumption
print "C sum", common.totalPlannedConsumptionInValueInA_TimeStep

self.consumptionPlanningInCycleNumber=common.cycle

Referring to totalPlannedConsumptionInValueInA_TimeStep, the method
updates that common value only until the starting point of the Hayekian
market; on the contrary, the V5 version of the method updates it in any
case.

In the Hayekian phase, in each step of a cycle we establish a max quantity
of consumptions, via a quota introduced interactively in the starting session
of the program. This action mimics the action of the households over time
in a period.

When the Hayekian market operates, the consumption total amount comes
from summing up all the consumption actions in actOnMarketPlacemethod.

31

Draft - The making of the model

4.3.3 setInitialPricesHM, Hayekian Market

• The method (or command) setInitialPricesHM,25, sent to all, operates
only in the Hayekian phase of each run.

• The method performs several actions.

1. In each cycle, while the Hayekian market is working, the method calcu-
lates the ratio number of sellers

number of buyers
between sellers and buyers as requested in

adopting the full Hayekian paradigm (as described at p.24). This pro-
portion is used to modify sellers’ price corrections in the full Hayekian
paradigm case, in actOnMarketPlace method (Section 4.3.6).
The code in Agent.py (setting the value of the ratioSellersBuyers
is:

set initial sell and buy prices in Hayekian market
def setInitialPricesHM(self):

1 ---
if common.cycle >= common.startHayekianMarket:
if not common.ratioSellersBuyersAlreadySet:

nEntrepreneurs = 0
for ag in self.agentList:
if ag.agType == "entrepreneurs":

nEntrepreneurs += 1
nSellers=nEntrepreneurs

nBuyers=len(self.agentList)

common.ratioSellersBuyersAlreadySet=True
common.ratioSellersBuyers=nSellers/nBuyers
print("Ratio sellers/buyers =",common.ratioSellersBuyers)
in setNewCycleValues common.ratioSellersBuyersAlreadySet=False
at the beginning of each cycle

2. In the first step of the Hayekian phase, the method states the initial
common price: being at time k, we use as starting point the price at
time k − 1 or, if k > 2, at k − 2.
If k = 1, we use the same structure of the non-Hayekian market, cal-
culating the price as the equilibrium price that would have been cre-
ated at t = 1 in the non-Hayekian execution, but outside WorldState
setMarketPriceV3 method (Sections 4.6.3 and 4.16.3), to avoid here
random shocks.
The code, always in Agent.py, is:

2 ---
if common.cycle == common.startHayekianMarket and \

not common.priceWarmingDone:
setting the basic price uniquely before the first Hayekian cycle

25Related to Version 6book

32

Draft - The making of the model

common.sellPrice=1000
common.buyPrice=-1000
if common.startHayekianMarket>1:
if len(common.ts_df.price.values) == 1:
common.buyPrice = common.sellPrice = \

common.ts_df.price.values[-1] # the last price
#print("Ag.", self.number,"buying at", self.buyPrice,
"selling at",self.sellPrice)
NB the code above can act only if t>1

if len(common.ts_df.price.values) > 1:
common.buyPrice = common.sellPrice = \

common.ts_df.price.values[-2] # the second last price
#print("Ag.", self.number,"buying at", self.buyPrice,
"selling at",self.sellPrice)
NB the code above can act only if t>2
NB NB we set the sellPrice also for workers but we do not
use it
when a worker becomes an entreprenuer she copies the
sell price of the firm she is coming from

else: # case t==1 being common.startHayekianMarket==1
look at the equilibrium price that would have been created
at t==1 in the non-Hayekian execution

in the common.startHayekianMarket == 1 case, when
actOnMaketPlace is activated
we already have
common.totalPlannedConsumptionInValueInA_TimeStep and
common.totalProductionInA_TimeStep
so, we can calculate

common.buyPrice = common.sellPrice = \
common.totalPlannedConsumptionInValueInA_TimeStep \
/ common.totalProductionInA_TimeStep

outside WorldState setMarketPriceV3 method, to avoid here
random shocks
NB NB we set the sellPrice also for workers but we do not
use it
when a worker becomes an entreprenuer she copies the
sell price of the firm she is coming from

#startingHayekianCommonPrice
print("!!")
print("starting Hayekian common price",common.buyPrice)
print("!!")

common.priceWarmingDone = True

3. Calculation of the individual starting prices. The parameter in use here
are initShock and initShift. Here we calculate both self.buyPrice
and self.sellPrice, because each agent can act both as entrepreneur-
seller and as buyer.

– We add a random correction to both the initial prices, to start with
two distributions of values. Let initShock the internal variable
containing the relative value ι as the range of the correction of
the individual starting prices in a random uniform way, but with

33

Draft - The making of the model

the internal variable initShift, having value ν, reasonably26 in the
interval [−1, 1], e.g., 0.10, shifting the range of the whole correction.
Our goal here is that of initializing (i) buyer prices mostly be-
low/above the starting price and (ii) seller prices mostly above/below
the starting price, to induce more or less intensively the necessity
of individual price corrections to start the initial exchanges.27

With pS,i as initial sell price of agent i, pB,i as initial buy price of
agent i and pH as starting Hayekian price, we have the eqs.:
∗ if εS,i ≥ 0

pS,i = pH(1 + εS,i) (4)

∗ if εS,i < 0
pS,i = pH/(1 + |εS,i|) (5)

with εS,i ∼ U(−ν ι, (1− ν) ι).
and
∗ if εB,i ≥ 0

pB,i = pH(1 + εB,i) (6)

∗ if εB,i < 0
pB,i = pH(1 + |εB,i|) (7)

with εB,i ∼ U(−(1− ν) ι, ν ι)

i) If we adopt ν = 0.10 and ι = 0.10, we only have a quite small
overlapping of the initial prices correction (correction are never
too rational, with someone moving in the wrong direction).
ε corrections will be uniformly distributed between −0.01 and
0.09 for the sellers and between −0.09 and 0.01 for the buyers
and, considering the individual prices as reservation prices, we
have an offer curve and a demand one crossing on the left side
of their graphic representation, as you can see in Figure 5.

ii) If we want not overlapping curves, we can use ν < 0, e.g.,
ν = −0.1, with ι = 0.10.
ε corrections will be uniformly distributed between 0.01 and
0.11 for the sellers and between −0.11 and −0.01 for the buyers,
as in Figure 6.

26With very different effects.
27At creation time, for each agent sellPrice is set to 1000 and buyPrice to −1000, so both to

implausible values, not operational.
In any case, the sellers (entrepreneur) cannot operate into the Hayekian market until their

starting price is defined; this information is reported setting to (True) the agent’s variable
sellPriceDefined.

34

Draft - The making of the model

Figure 5: Case i): demand curve with
10,000 agents, εB in [−0.09, 0.01); offer
curve with 10 agents, εS in [−0.01, 0.09)

Figure 6: Case ii): demand curve with
10,000 agents, εB in [−0.11,−0.01); offer
curve with 10 agents, εS in [0.01, 0.11)

35

Draft - The making of the model

iii) We can also desire to start in a well balancing situation, with
ν = 0.5 and, e.g., ι = 0.10|0.20. ε corrections will be uniformly
distributed
(a) between −0.05 and 0.05 for the sellers and between −0.05
and 0.05 for the buyers, as in Figure 7 for ι = 0.10,
or (b) between −0.10 and 0.10 for the sellers and between −0.10
and 0.10 for the buyers, as in Figure 8 for ι = 0.20, doubling
the y scale.

Figure 7: Case iii): (a) demand curve
with 10,000 agents, εB in [−0.05, 0.05);
offer curve with 10 agents, εS in
[−0.05, 0.05)

The code, always in Agent.py, is:
3 ---
individual starting prices
if common.cycle == common.startHayekianMarket:

#starting sell price
self.sellPrice = \

applyRationallyTheRateOfChange(common.sellPrice,\
uniform(-common.initShift*common.initShock, \

(1-common.initShift)*common.initShock))
if self.agType=="entrepreneurs":

print("entrepreneur", self.number, "has initial sell price",\
self.sellPrice)

self.sellPriceDefined=True

starting individual buy price
self.buyPrice = \

applyRationallyTheRateOfChange(common.buyPrice,\
uniform((common.initShift-1)*common.initShock, \

common.initShift*common.initShock))

36

Draft - The making of the model

Figure 8: Case iii): (b) demand curve
with 10,000 agents, εB in [−0.10, 0.10);
offer curve with 10 agents, εS in
[−0.10, 0.10)

To generate symmetric effect both for positive and negative rates of
change, we use the applyRationallyTheRateOfChange(base,rate)
function of Agent.py. The code is:
def applyRationallyTheRateOfChange(base,rate):

if rate >= 0:
return base*(1+rate)

if rate < 0:
return base/(1+abs(rate))

4.3.4 nextSellPriceJumpFHM, Full Hayekian Market

• The method (or command) nextSellPriceJumpFHM,28, sent to entrepreneurs,
operates only in the Hayekian phase of each run.

It works in the FHM, or Full Hayekian Market, case, i.e., with the full
Hayekian market paradigm (as described at p.24), modifying the sell price of
a specific entrepreneur-seller with a jump on the side of the up corrections
of her reservation prices. The method operates with a given probability.

In commonVar.py we have the settings of the jump size and the pSize prob-
ability.

jump is a relative value, so pJ = p(1 + jump).

The probability of jumping operates as a switch, moving the agent to be a
jumper and viceversa.

28Related to Version 6book

37

Draft - The making of the model

If a worker of a jumping up entrepreneur moves to be an entrepreneur herself,
she starts as a jumper.

An entrepreneur making a jump continues anyway to modify her price within
the actOnMaketPlaceMethod in each substep.

• The code is:

modify a specific sell price with a jump on the side of the up
corrections, in full hayekian market
NB we are at the end of each cycle
def nextSellPriceJumpFHM(self):

if self.agType != "entrepreneurs": return
if common.hParadigm=="quasi": return

if common.pJump != -1 and npr.uniform(0,1)<=common.pJump:
if self.jump == 0:

self.jump=common.jump
self.sellPrice *= 1 + self.jump
print("entrepreur # ", self.number, \

"raises the sell price with a jump")
else:

self.sellPrice /= 1 + self.jump
self.jump=0
print("entrepreur # ", self.number, \

"reduces the sell price with a jump back")

4.3.5 nextSellPricesQHM, Quasi Hayekian Market

• The method (or command) nextSellPricesQHM,29, sent to entrepreneurs,
operates only in the Hayekian phase of each run.

It works in the QHM, or Quasi Hayekian Market, case, i.e., with the quasi
Hayekian market paradigm (as described at p.24).

In this case, with the price correction switch hParadigm set to quasi, the
correction of the entrepreneurs’ prices occurs only at the end of each cycle.30

We have several possible choices. To select an option we use the variable
quasiHchoice with with the values: unsold, profit, and randomUp.

i) Case quasiHchoice set to unsold. We compare sold production
production

, as sold-
ratio, with two thresholds:

– soldThreshold1 (e.g., 0.90) and
– soldThreshold2 (e.g., 0.99);

29Related to Version 6book
30In this case, could be important to start with a well balancing initial situation, as in solution

iii) at p. 36.

38

Draft - The making of the model

– if the result is less or equal than soldThreshold1, a random cor-
rection is applied, dividing the price by 1 + |u1| with u1 drawn
from a flat distribution u1 ∼ U(decreasingRateRange, 0); e.g.,
decreasingRateRange = −0.10;

– if the result is greater or equal than soldThreshold2, a random
correction is applied, multiplying the price by 1+u2 with u2 drawn
from a flat distribution u2 ∼ U(0, increasingRateRange); e.g.,
increasingRateRange = 0.01;

– between the soldThreshold1 and soldThreshold2 values, no cor-
rection occurs;

– if entrepreneursMindIfPlannedProductionFalls is True and the
global plannedProduction is falling (more than a given thresh-
old thresholdToDecreaseThePriceIfTotalPlannedPFalls, e.g.,
0.05), entrepreneurs (individually) reduce their prices, with the
same mechanism above; this condition supersede the comparison
of the sold-ratio with the two thresholds.

ii) Case quasiHchoice set to randomUp. The logical scheme is the same
of the jump in Section 4.3.4 for the full implementation but here the
huge difference is that we have ho correction within the specific cycle,
with the jumped or un-jumped price kept constant.
We use the same parameters of Section 4.3.4. In commonVar.py we have
the settings of the jump size and the pJump probability.
jump is a relative value, so pJ = p(1 + jump). If jumppJump| is set to
−1 the random number generation is avoided (for retro-compatibility
problems).
The probability of jumping operates as a switch, moving the agent to
be a jumper and viceversa.
If a worker of a jumping up entrepreneur moves to be an entrepreneur
herself, she starts as a jumper.
An entrepreneur making a jump will keep unchanged the price for a
whole cycle (or more, if the opposite action is not turning up).

iii) Case quasiHchoice set to profit. The entrepreneur decides to raise or
to lower her price if the profit is negative. priceSwitchIfProfitFalls
is a switch with values “raise” or “lower”. To synthesize the actual diffi-
culty of knowing the demand elasticity, the actual choice between raising
o lowering the price is a random one, with 60% of probability to the first
choice (“raise”) and 40% to the other one if priceSwitchIfProfitFalls
is set to “raise”; vice-versa, if it set to “lower”.

39

Draft - The making of the model

The correction is made with probability pJump as above and size jump,
always as above, calculating:
pP = p(1 + jump) if the switch is on “raise” or pP = p/(1 + jump) if on
“lower”.
This action works from t = 1.
We have also the parameter profitStrategyReverseAfterN.

(a) As default, if positive, it determines the time for a reverse action,
lowering the price if raised and viceversa. In the while, no other
actions on price are allowed.

(b) If the parameter profitStrategyReverseAfterN is greater than
the length of the run, the reverse action will never took place and
so a unique price correction is possible.

(c) If the parameter is 0, no reverse actions are possible and the raise
or lower actions can be repeated if the profit is negative.

If a worker of a profit-jumping up entrepreneur moves to be an entrepreneur
herself, she starts with her profitStrategyReverseAfterN counter set to
the value of her former company.

Being here the price corrections for the entrepreneurs uniquely at the end of
each period, the full Hayekian market paradigm (as described at p.24) any-
way operates in the first period Hayekian period. The goal of this exception
is that of avoiding that the sellers are using the initial random prices for the
full length of the first cycle. As we indicated,30 above, it is important here
to start with a well balancing structure of demand and offer curves.

• The resulting code is:

modify sell prices in quasi hayekian market
NB we are at the end of each cycle
def nextSellPricesQHM(self):

if self.agType != "entrepreneurs": return
if common.hParadigm=="full": return

hayekian period, "quasi" hayekian paradigm

i) considering relative unsold quantity
if common.hParadigm=="quasi" and common.quasiHchoice=="unsold":
if common.cycle >= common.startHayekianMarket:

oldP=self.sellPrice
if common.cycle >1 and \
common.entrepreneursMindIfPlannedProductionFalls and \
common.ts_df.iloc[-1, 3] / common.totalPlannedProduction - 1 >= \

common.thresholdToDecreaseThePriceIfTotalPlannedPFalls:
indexing Python style, pos. -1 is the last one
self.sellPrice = applyRationallyTheRateOfChange(self.sellPrice,\

uniform(common.decreasingRateRange, 0))

40

Draft - The making of the model

print(("end of t = %d entrepreneur %d initial production"+\
" %.2f sold %.3f \nold price %.3f new price %.3f as "+\
" total plannedProduction falls") %\
(common.cycle,self.number,self.production,\
self.soldProduction,oldP,self.sellPrice))

else:
if self.soldProduction/self.production <= common.soldThreshold1:

self.sellPrice = applyRationallyTheRateOfChange(self.sellPrice,\
uniform(common.decreasingRateRange, 0))

if self.production/self.production>=common.soldThreshold2:
self.sellPrice = applyRationallyTheRateOfChange(self.sellPrice,\

uniform(0, common.increasingRateRange))

print(("end of t = %d entrepreneur %d initial production"+\
" %.2f sold %.3f \nold price %.3f new price %.3f") %\
(common.cycle,self.number,self.production,\
self.soldProduction,oldP,self.sellPrice))

return

ii) considering randomUp
if common.hParadigm=="quasi" and common.quasiHchoice=="randomUp":

if common.pJump != -1 and npr.uniform(0,1)<=common.pJump:
if self.jump == 0:

self.jump=common.jump
self.sellPrice *= 1 + self.jump
print("entrepreur # ", self.number, \

"raises the sell price with a jump")
else:

self.sellPrice /= 1 + self.jump
self.jump=0
print("entrepreur # ", self.number, \

"reduces the sell price with a jump back")

return

iii) consideirng profit falls to act on price
if common.hParadigm=="quasi" and common.quasiHchoice=="profit":
if common.cycle >= common.startHayekianMarket:

if self.profitStrategyReverseAfterN==0:
if common.priceSwitchIfProfitFalls=="raise":

if npr.uniform(0,1)<=0.6:
self.priceSwitchIfProfitFalls="raise"

else:
self.priceSwitchIfProfitFalls="lower"

if common.priceSwitchIfProfitFalls=="lower":

if npr.uniform(0,1)<=0.4:
self.priceSwitchIfProfitFalls="raise"

else:
self.priceSwitchIfProfitFalls="lower"

if common.pJump != -1 and self.profit <0 and \
npr.uniform(0,1)<=common.pJump:

if self.priceSwitchIfProfitFalls=="raise":
self.sellPrice *= 1 + common.jump
print("entrepreur # ", self.number, \
"with profit<0, is raising the sell price")
self.profitStrategyReverseAfterN=\

common.profitStrategyReverseAfterN

41

Draft - The making of the model

0 means: acting again always possible
a value > the number of cycles means:
acting again never possible

if self.priceSwitchIfProfitFalls=="lower":
self.sellPrice /= 1 + common.jump
print("entrepreur # ", self.number, \
"with profit<0, is lowering the sell price")
self.profitStrategyReverseAfterN=\

common.profitStrategyReverseAfterN

else:
self.profitStrategyReverseAfterN-=1
if self.profitStrategyReverseAfterN==0:
if self.priceSwitchIfProfitFalls=="raise":

self.sellPrice /= 1 + common.jump
print("entrepreur # ", self.number, \
"lowering back the sell price")

if self.priceSwitchIfProfitFalls=="lower":
self.sellPrice *= 1 + common.jump
print("entrepreur # ", self.number, \
"raising back the sell price")

return

here in error
print("Using the ’quasi’ option in hayekian market:\n",\

"the",common.quasiHchoice, "value is not one of the\n",
"valid option (unsold, randomUp, profit)")

os.sys.exit(1)

4.3.6 actOnMarketPlace

• The method (or command) actOnMarketPlace,31 operates only in theHayekian
phase of each run.

Both the entrepreneurs and the workers are buyers, while the sellers are
uniquely the entrepreneurs.

• Search for sellers. In the first step of each multiple call of actOnMarketPlace
in each cycle, and for each buyer, a seller is chosen from a temporary list
locally generated.

• The method actOnMarketPlace is included in a macro,.The number of repe-
titions for each buyer in each cycle (the number of buy attempts) is regulated
by the number of repetition into the macro. In each repetition the program
shuffles the agents. Each agent has in memory the effect of the action done
in the previous repetition within a cycle.

• Sold products are recorded in quantity in self.soldProduction, always
reset to 0 in any new cycle adaptProductionPlanV6 step.

31Related to Version 6book

42

Draft - The making of the model

The deal between a buyer and a seller is based on the confrontation of the
prices. If pB,i, as buy price of agent i, is > of pS,j, as sell price of agent j,
the agents exchange, at the seller price, the min quantity among the buying
capacity of the buyer at that price, its max spending value in each step of a
cycle at that price32 and the actual production residual quantity of the seller.

The revenue of the seller (one of the entrepreneurs) is accounted for profit
calculations.

• Prices: what price in each action for each agent?

– The best is their price, i.e., the price at which they have concluded a deal
(the last one, if more than a deal was made in a same time interval)33

or that of the last bid (if buyers) or ask (if sellers) they made without
concluding a deal. This price is corrected with the rules below.

– To generate symmetric effect both for positive and negative rates of
change, we use the applyRationallyTheRateOfChange(base,rate)
function as described at p.37.

– The continuous process of correction of the individual prices, applied to
the transactions within each cycle, works in the following way.

1. We modify the buy price (a random correction) if the last agent
negotiation, also if unsuccessful, was on the buy side.

2. The same on the sell price, but here only in case of hParadigm
set to full (see p.24 and p.32); if this is the case, the sellers’
price correction is limited by the factor Z reporting the value of
ratioSellersBuyers, to account for the different (extremely higher)
number of corrections they made in a cycle.
Let runningShock be the internal variable containing the relative
value ι̃ (e.g., 0.05) as the range of the correction or the individual
running prices in a random uniform way (but shifted, with the
internal variable runningShift containing the value of ν̃ defined
in the interval [0, 0.5] e.g., 0.10, with a very low superimposition),
with pB,i as buy price of agent i and pS,i as sell price of agent i.
runningShock and runningShift are differentiate for buyers and
sellers with runningShockB runningShiftB and runningShockS
runningShiftS.

32As stated in Section 4.3.2, in each step of a cycle we establish a max quantity of consump-
tions, via a quota introduced interactively in the starting session of the program.

33The event is possible if the agents buy or sell only fractions of their buying or selling
quantities, so repeating their actions

43

Draft - The making of the model

The equations are the same as 6, 7, 4 and 5, with ν̃B or ν̃S substituting
ν and ι̃B or ι̃S substituting ι. Remember Z as ratio sellers to buyers.

• After the starting cycle of the Hayekian phase, the agents use two status
variable (technically: self.statusB and self.statusS), initialized to 0 and
reporting their short term history both as buyers (workers or entrepreneurs)
and as sellers (entrepreneurs)..

Conventions:

– self.statusB

∗ 0 means never used;
∗ 1 if previous action was a successful buy attempt;
∗ −1 if previous action was an unsuccessful buy attempt;

– self.statusS

∗ 0 means never used;
∗ 1 if previous action was a successful sell attempt;
∗ −1 if previous action was an unsuccessful sell attempt.

– Using the variables introduced above, we adopt ν̃B = ν̃S = 0.10 and
ι̃B = ι̃S = 0.05 as values for the initial experiment.

– Buyer case:

∗ if the last transaction succeeded (statusB is 1) and εBdown,i ≥ 0:

pB,it = pB,it−1(1 + εBdown,i) (8)

∗ if the last transaction succeeded (statusB is 1) and εBdown,i < 0:

pB,it = pB,it−1/(1 + |εBdown,i|) (9)

with εBdown,i ∼ U(−(1 − ν̃B) ι̃B, ν̃B ι̃B), so mostly negative (the
agent tries to decrease its reservation price);
∗ if the last transaction failed (statusB is −1) and εBup,i ≥ 0:

pB,it = pB,it−1(1 + εBup,i) (10)

∗ if the last transaction failed (statusB is −1) and εBup,i < 0:

pB,it = pB,it−1/(1 + |εBup,i|) (11)

with εBup,i ∼ U(−ν̃B ι̃B, (1− ν̃B) ι̃B), so mostly positive (the agent
tries to increase its reservation price).

44

Draft - The making of the model

– Seller case:34

∗ if the last transaction succeeded (statusS is 1) and εSup,i ≥ 0:

pS,it = pS,it−1(1 + ZεSup,i) (12)

∗ if the last transaction succeeded (statusS is 1) and εSup,i < 0:

pS,it = pS,it−1/(1 + Z|εSup,i|) (13)

with εSup,i ∼ U(−ν̃S ι̃S, (1− ν̃S) ι̃S), so mostly positive (the agent
tries to increase its reservation price);
∗ if the last transaction failed (statusS is −1) and εSdown,i ≥ 0:

pS,it = pS,it−1(1 + ZεSdown,i) (14)

∗ if the last transaction failed (statusS is −1) and εSdown,i < 0:

pS,it = pS,it−1/(1 + Z|εSdown,i|) (15)

with εSdown,i ∼ U(−(1− ν̃S) ι̃S, ν̃S ι̃S), so mostly negative (the agent
tries to decrease its reservation price).

– The function applyRationallyTheRateOfChange(base,rate), intro-
duced above, performs in a unique code the two alternative calculations
of eqs.: 8 or 9; 10 or 11; 12 or 13; 14 or 15.

– The method also has a tool to generate an optional report about resid-
ual consumption in value and unsold production in quantity, at the
beginning of each substep in a cycle.
To obtain the report, the variable checkResConsUnsoldProd has to be
true in commonVar.py. The report is printed in the regular output flow
of the model.
You can find this tool within the method actOnMarketPlace, under the
comment # in each sub step . . . The code is a bit tricky (in each call,
the elaboration jumps from an instance of agent to another one).

• The resulting code of the whole method is:
34Operating in case of hParadigm set to full ; if set to quasi the correction is made once per

cycle; if the parameter is set to a value which is neither full nor quasi we have a side effect,
because no corrections will operate on sell prices. In case of the quasi scheme, in the first cycle
the full one is anyway operating, look at p.38.

45

Draft - The making of the model

all acting as consumers on the market place
def actOnMarketPlace(self):

if common.cycle < common.startHayekianMarket: return

in each sub step, we show residual consumption and production; the
code operates on different agents, but consistently (in each call,
the elaboration jumps from an instance of agent to another one)
if common.checkResConsUnsoldProd:

#print(self.number)
if common.withinASubstep:

common.internalSubStepAgentCounter+=1
#print(’*’,common.internalSubStepAgentCounter)
if common.internalSubStepAgentCounter==len(self.agentList):

common.withinASubstep=False

else: # not withinASubstep
common.withinASubstep=True
common.internalSubStepAgentCounter=1
if common.currentCycle != common.cycle:

common.currentCycle = common.cycle
common.subStepCounter=0
common.readySellerList=False
print()

common.subStepCounter+=1
residualConsumptionCapabilityInValue=0
residualUnsoldProduction=0
for anAgent in self.agentList:

residualConsumptionCapabilityInValue += anAgent.consumption
if anAgent.agType=="entrepreneurs":

residualUnsoldProduction+= \
anAgent.production - anAgent.soldProduction

print(\
"subc. %2d.%3d starts with cons. capab. (v) %.1f and uns. p. (q) %.1f"\
% (common.cycle, common.subStepCounter, residualConsumptionCapabilityInValue,\

residualUnsoldProduction))

try: common.wr.writerow
except:

print("The file firstStepOutputInHayekianMarket.csv was not"+\
" created in mActions.py")

os.sys.exit(1)

first call in each cycle, preparing action (only once per cycle)
#if self.currentCycle != common.cycle:
if not common.readySellerList:

#self.currentCycle = common.cycle

common.readySellerList=True
we check that the planning of the consumption has been
made for the current cycle
if self.consumptionPlanningInCycleNumber != common.cycle:

print(’Attempt of using actOnMarketPlace method before’+\
’ consumption planning’)

os.sys.exit(1) # to stop the execution, in the calling module
we have multiple except, with ’SystemExit’ case

create a temporary list of sellers, starting each step (cycle)
common.sellerList=[]

46

Draft - The making of the model

for anAg in self.agentList:
if anAg.getType() == "entrepreneurs":

if not anAg.sellPriceDefined:
print("Inconsistent situation, an active selles"\
+" has no sell price defined.")
os.sys.exit(1)

else: common.sellerList.append(anAg)

acting (NB self.consumption comes from planConsumptionInValueV6)
if buying action is possible
#print("cycle",common.cycle,"ag",self.number,"cons val",self.consumption)

if self.consumption > 0:
if common.sellerList != []:
chose a seller
mySeller=common.sellerList[randint(0,len(common.sellerList)-1)]
sellerQ=mySeller.production - mySeller.soldProduction
if sellerQ>0:
try a deal
if self.buyPrice < mySeller.sellPrice:

self.statusB=mySeller.statusS=-1
if self.buyPrice >= mySeller.sellPrice:

self.statusB=mySeller.statusS= 1

#print(common.cycle,"entr.",mySeller.number,\
mySeller.production,mySeller.soldProduction,\
mySeller.sellPrice)

NB production can be < plannedProduction due to lack of workers

consumption in value cannot exceed self.maxConsumptionInAStep
buyerQ=min(self.consumption/mySeller.sellPrice, sellerQ,\

self.maxConsumptionInAStep/mySeller.sellPrice)

mySeller.soldProduction+=buyerQ
mySeller.revenue+=buyerQ*mySeller.sellPrice
self.consumption-=buyerQ*mySeller.sellPrice
self.unspentConsumptionCapability=self.consumption
#print("cycle",common.cycle,"ag",self.number,"deal: cons val",\
buyerQ*mySeller.sellPrice,"price",mySeller.sellPrice)
saving the price of the transaction
common.hayekianMarketTransactionPriceList_inACycle.\

append(mySeller.sellPrice)

common.totalConsumptionInQuantityInA_TimeStep += buyerQ

#ouput - seller has no goods to sell
elif common.cycle==common.startHayekianMarket:

common.wr.writerow\
(["nogoods", "buy", numpy.nan, self.consumption, self.number,\
"sell", numpy.nan,mySeller.number])

#output - deal vs. nodeal
if common.cycle==common.startHayekianMarket:

if mySeller.statusS==1:
common.wr.writerow\
(["deal", "buy", self.buyPrice, self.consumption, self.number,\
"sell", mySeller.sellPrice,mySeller.number])

if mySeller.statusS==-1 and mySeller.sellPriceDefined:
common.wr.writerow\

47

Draft - The making of the model

(["nodeal", "buy", self.buyPrice, self.consumption, self.number,\
"sell", mySeller.sellPrice,mySeller.number])

correct running prices

if the status is != 0 the agent has already been acting
if self.statusB == 1: # buyer case (statusB 1, successful buy attempt,

acting mostly to decrease the reservation price)
self.buyPrice = applyRationallyTheRateOfChange(self.buyPrice,\

uniform(-(1-common.runningShiftB)* \
common.runningShockB, \
common.runningShiftB* \
common.runningShockB))

if self.statusB == -1: # buyer case (statusB -1, unsuccessful buy attempt,
acting mostly to increase the reservation price)

self.buyPrice = applyRationallyTheRateOfChange(self.buyPrice,\
uniform(-common.runningShiftB* \

common.runningShockB, \
(1-common.runningShiftB)* \
common.runningShockB))

if mySeller.statusS == 1 and common.hParadigm=="full" or \
(common.hParadigm=="quasi" and \
common.cycle==common.startHayekianMarket):

seller case (statusS 1, successful sell attempt,
mySeller.sellPrice = applyRationallyTheRateOfChange(mySeller.sellPrice,\

common.ratioSellersBuyers*\
uniform(-common.runningShiftS* \
common.runningShockS,
(1-common.runningShiftS)* \
common.runningShockS))

if mySeller.statusS == -1 and common.hParadigm=="full" or \
(common.hParadigm=="quasi" and \
common.cycle==common.startHayekianMarket):

seller case (statusS -1, unsuccess. s. attempt,
acting mostly to decrease the reservation price)

mySeller.sellPrice = applyRationallyTheRateOfChange(mySeller.sellPrice,\
common.ratioSellersBuyers*\
uniform(-(1-common.runningShiftS)* \
common.runningShockS, \
common.runningShiftS* \
common.runningShockS))

#print("ag.", self.number, "new prices", self.buyPrice, mySeller.sellPrice)

cleaning the situation (redundant)\\
self.statusB=mySeller.statusS=0

#output - common.sellerList==[]
elif common.cycle==common.startHayekianMarket:

common.wr.writerow\
(["nosellers", "buy", self.buyPrice, self.consumption, self.number,\
"sell", numpy.nan,numpy.nan])

#output - self.consumption<=0
elif common.cycle==common.startHayekianMarket:

common.wr.writerow\
(["noconsumption", "buy", numpy.nan, self.consumption, self.number,\
"sell", numpy.nan,numpy.nan])

48

Draft - The making of the model

#output close
if common.cycle==common.startHayekianMarket+1 and not common.closed:

common.csvf.close()
common.closed=True

4.3.7 evaluateProfitV6

• The method (or command) evaluateProfitV6,35 sent to the entrepreneurs,
orders them to calculate their profit. Being P i

t the production and the la-
bor force Lit measured via the network connecting the entrepreneur to her
workers plus 1 to take in account the entrepreneur herself.

The use of P i
t , the actual production of the entrepreneurs, accounts both for

the production plan decided with adaptProductionPlan, page 61, and for
the limits in hiring, if any, as in hireFireWithProduction, page 55. The
sum of all the actual productions of each entrepreneur is used, as at page 82,
in setMarketPriceV3.

The method has been improved in version 2, to manage extra costs for
the new entrant firms, but keeping safe the backward compatibility of the
method.

pt is the price, clearing the market at time t and it is calculated by the
abstract item WorldState via the method setMarketPrice, as explained in
Section 4.16.

w is the wage per employee and time unit, set to 1.0 in common variable
space, not changing with t, but the case of the important events of:

– wage rise due both to full employment (Subsection 4.7.1) and

– to the creation of barriers against new entrants (Subsection 4.7.3).

C are extra costs for new entrant firms. They are calibrated to assure the
effectivness of the action described in Subsection 4.7.3, but in a non deter-
ministic way, thanks to the movements in prices.

If the common variable wageCutForWorkTroubles is set to True the costs
determination takes in account the reduction in the wages (but the wage of
the entrepreneur, not changing).

Considering the presence of work troubles (see subsection 4.8.1) the deter-
mination of the clearing price, as at page 82, can signal an increase in the
equilibrium price, due to the lacking production.

35Related to Version 6book.

49

Draft - The making of the model

The (relative) shock ψi,t > 0 due to work troubles is defined in subsection
4.8.1.

In presence of work troubles the firm has to accept a reduction of its price,
to compensate its customers for having undermined the confidence in the
implicit commitment of producing a given quantity (the production plan,
specified in subsection 4.4.1).

That penalty value, as a relative measure, is in common as penaltyValue
and here shortly as pv. Locally, pvit, for the firm i at time t, is set to pv if
ψi,t > 0; otherwise (ψi,t = 0) is set to 0.

Here we have the difference with V5. Eqs. 16 and 17 are used in the pre-
hakyean phase, while eqs. 18 and 19 work in the Hayekian one.

The profit evaluation, if wageCutForWorkTroubles is set to True, is:

Πi
t = pt(1− pv1

t)P
i
t − (w − ψi,t)(Lit − 1)− 1w − C (16)

being 1w the wage of the entrepreneur.

If wageCutForWorkTroubles is set to False, the result is:

Πi
t = pt(1− pvit)P i

t − wLit − C (17)

In the Hayekian phase we have, with REV i
t reporting the revenue of firm i

ant time t:

The profit evaluation, if wageCutForWorkTroubles is set to True, is:

Πi
t = REV i

t − (w − ψi,t)(Lit − 1)− 1w − C (18)

being 1w the wage of the entrepreneur.

If wageCutForWorkTroubles is set to False, the result is:

Πi
t = REV i

t − wLit − C (19)

The experiments run in April 2017 (with V5 of this method) for the final
version for the Italian economic journal have the penalty value pvit set to 0.

The new entrant firms have extra costs C to be supported, retrieved in XC
variables, but only for k periods, as stated in commonVar.py and activated
by method toEntrepreneur.
The code is:

50

Draft - The making of the model

calculateProfit
def evaluateProfitV6(self):

this is an entrepreneur action
if self.agType == "workers":

return

backward compatibily to version 1
try:

XC = common.newEntrantExtraCosts
except BaseException:

XC = 0
try:

k = self.extraCostsResidualDuration
except BaseException:

k = 0

if k == 0:
XC = 0

if k > 0:
self.extraCostsResidualDuration -= 1

the number of pruducing workers is obtained indirectly via
production/laborProductivity
print self.production/common.laborProductivity

how many workers, not via productvity due to possible troubles
in production

laborForce = gvf.nx.degree(common.g, nbunch=self) + \
1 # +1 to account for the entrepreneur herself

the followin if/else structure is for control reasons because if
not common.wageCutForWorkTroubles we do not take in account
self.workTroubles also if != 0; if = 0 is non relevant in any case
if common.wageCutForWorkTroubles:

self.costs = (common.wage - self.hasTroubles) \

* (laborForce - 1) \
+ common.wage * 1 + \
XC

above, common.wage * 1 is for the entrepreur herself

else:
self.costs = common.wage * laborForce + \

XC
print "I’m entrepreur", self.number, "costs are",self.costs

penalty Value
pv = 0
if self.hasTroubles > 0:

pv = common.penaltyValue

V6 - before Hayekian phase
if common.cycle < common.startHayekianMarket:

the entrepreur sells her production, which is contributing - via
totalActualProductionInA_TimeStep, to price formation
self.profit = common.price * (1. - pv) * self.production - self.costs
print("I’m entrepreur", self.number, "my price is ",

common.price * (1. - pv))

V6 - into the Hayekian phase
else:

51

Draft - The making of the model

self.profit = self.revenue - self.costs
print("I’m entrepreur", self.number, "my individual price is ",

self.sellPrice)

individual data collection
creating the dataframe
try:

common.dataCounter
except BaseException:

common.dataCounter=-1

try:
common.firm_df

except BaseException:
common.firm_df = pd.DataFrame(

columns=[
’production’,
’profit’])

print("\nCreation of fhe dataframe of the firms (individual data)\n")

common.dataCounter+=1
#common.firm_df.set_value(common.dataCounter,\ deprecated since pandas 0.21
col=common.firm_df.columns.get_loc(’production’)
common.firm_df.at[common.dataCounter,\

col]=self.production
#common.firm_df.set_value(common.dataCounter,\ deprecated since pandas 0.21
col=common.firm_df.columns.get_loc(’profit’)
common.firm_df.ix[common.dataCounter,\

col]=self.profit

common.totalProfit += self.profit

consumptions
def planConsumptionInValue(self):

self.consumption = 0
#case (1)
Y1=profit(t-1)+wage NB no negative consumption if profit(t-1) < 0
this is an entrepreneur action
if self.agType == "entrepreneurs":

self.consumption = common.a1 + \
common.b1 * (self.profit + common.wage) + \
gauss(0, common.consumptionRandomComponentSD)

if self.consumption < 0:
self.consumption = 0

profit, in V2, is at time -1 due to the sequence in schedule2.xls

#case (2)
Y2=wage
if self.agType == "workers" and self.employed:

self.consumption = common.a2 + \
common.b2 * common.wage + \
gauss(0, common.consumptionRandomComponentSD)

#case (3)
Y3=socialWelfareCompensation
if self.agType == "workers" and not self.employed:

self.consumption = common.a3 + \
common.b3 * common.socialWelfareCompensation + \
gauss(0, common.consumptionRandomComponentSD)

52

Draft - The making of the model

update totalPlannedConsumptionInValueInA_TimeStep
common.totalPlannedConsumptionInValueInA_TimeStep += self.consumption
print "C sum", common.totalPlannedConsumptionInValueInA_TimeStep

4.3.8 setMarketPriceV6

• The method (or command) setMarketPriceV6,36 sent to the WorldState,
orders it to evaluate the market clearing prices in the pre-Hayekian phase and
successively to record the mean and the standard deviation to the Hayekian
prices in each cycle. See below Section 4.16 and specifically Section 4.16.4.

4.3.9 toEntrepreneurV6

• The method (or command) toEntrepreneurV6,37 sent to workers, the agent,
being a worker, decides to become an entrepreneur at time t, if its employer
has a relative profit (reported to the total of the costs) ≥ a given threshold at
time t−1. The threshold is retrieved from the variable thresholdToEntrepreneur.

In real world, this kind of decision is a quite rare one, so we have to pass a sec-
ond more severe threshold, that we define as absoluteBarrierToBecomeEntrepreneur;
the value is defined in commonVar.py and shown via parameters.py file.

This parameter represents a potential max number of new entrepreneurs in
each cycle.

About the details, look at the method toEntrepreneurV3 in Section 4.5.1.

The novelty, in V6book, is that—if the Hayekian market is already activated—
the hew entrepreneur copies the selling price of the previous firm where she
was a worker.

If the previous firm made a jump in price, also the new born entrepreneur
has the info of the jump status.
The code is:

to entrepreneurV6
def toEntrepreneurV6(self):

if self.agType != "workers" or not self.employed:
return

print float(common.absoluteBarrierToBecomeEntrepreneur)/ \
len(self.agentList)
if random() <= float(common.absoluteBarrierToBecomeEntrepreneur) / \

len(self.agentList):
#myEntrepreneur = gvf.nx.neighbors(common.g, self)[0] with nx 2.0
myEntrepreneur = list(common.g.neighbors(self))[0]

36Related to Version 6book, jumping from 3 to 6 in numbering the method.
37Related to Version 6book, jumping from 3 to 6 in numbering the method.

53

Draft - The making of the model

myEntrepreneurProfit = myEntrepreneur.profit
myEntrepreneurCosts = myEntrepreneur.costs
if myEntrepreneurProfit / myEntrepreneurCosts >= \

common.thresholdToEntrepreneur:
print(

"Worker %2.0f is now an entrepreneur (previous firm relative profit %4.2f)" %
(self.number, myEntrepreneurProfit / myEntrepreneurCosts))

common.g.remove_edge(myEntrepreneur, self)

originally, it was a worker
if self.xPos > 0:

gvf.pos[self] = (self.xPos - 15, self.yPos)
originally, it was an entrepreneur
else:

gvf.pos[self] = (self.xPos, self.yPos)
colors at http://www.w3schools.com/html/html_colornames.asp
gvf.colors[self] = "LawnGreen"
self.agType = "entrepreneurs"
self.employed = True
self.extraCostsResidualDuration = common.extraCostsDuration

if common.cycle >=common.startHayekianMarket:
if myEntrepreneur.sellPriceDefined:

self.sellPrice=myEntrepreneur.sellPrice
self.jump=myEntrepreneur.jump
print("with the same sell price of the the previous firm",\

self.sellPrice)
self.profitStrategyReverseAfterN=\

myEntrepreneur.profitStrategyReverseAfterN
else:

print("New entrepreneur cannot copy the price of previous firm")
os.sys.exit(1)

4.4 Methods used in Versions 1, 2, 3, 4, 5, 5b, 5bPy3,
5c, 5c_fd, 5book, 6book

4.4.1 makeProductionPlan

• The method (or command) makeProductionPlan,38 sent to the entrepreneurs,
orders them to guess their production for the current period. The production
plan P̂ i

t is determined in a random way, using a Poisson distribution, with
ν = 10 as mean (suggested value kept in the common space).

As a definition, the production plan is:

P̂ i
t ∼ Pois(ν) (20)

We suggest temporary a value of 5 for ν, with (in Versions 1 and 2) the quan-
tities: entrepreneurs 5, workers 20 + the 5 entrepreneurs, labor productivity

38Related to Versions 1, 2; in the 3, 4, 5, 5b, 5bPy3 and 5c, 5c_fd and 6 cases, only at time=1

54

Draft - The making of the model

1. Always in Versions 1 and 2, the value of ν can be modified in the prologue
of the run).

With Version 3, the makeProductionPlan method works uniquely with t = 1
being t internally common.cycle created and set to 1 by ObserverSwarm
when starts.

Version 3 calculates the initial value ν (used uniquely in the first step) as:

ν = ρ
(Nworkers +Nentrepreneurs)

Nentrepreneurs

(21)

In this way about a ρ ratio of the agents is producing in the beginning.
Internally, the total numbers of the agents Nworkers + Nentrepreneurs can be
obtained as the length of the agentList; the number of entrepreneurs is
calculated from the same list considering only the entrepreneurs.

The code is:

makeProductionPlan
def makeProductionPlan(self):

this is an entrepreneur action
if self.agType == "workers": return

if common.projectVersion >= 3 and common.cycle==1:
nEntrepreneurs = 0
for ag in self.agentList:

if ag.agType=="entrepreneurs":
nEntrepreneurs+=1

#print nEntrepreneurs
nWorkersPlus_nEntrepreneurs=len(self.agentList)
#print nWorkersPlus_nEntrepreneurs
common.nu=(common.rho*nWorkersPlus_nEntrepreneurs)/nEntrepreneurs
#print common.rho, common.nu

if (common.projectVersion >= 3 and common.cycle==1) or \
common.projectVersion < 3:
self.plannedProduction=npr.poisson(common.nu,1)[0] # 1 is the number
of element of the returned matrix (vector)
#print self.plannedProduction

common.totalPlannedProduction+=self.plannedProduction

4.4.2 hireFireWithProduction

• The method (or command) hireFireWithProduction,39 sent to the entrepreneurs,
orders them to hire or fire comparing the labor forces required for the pro-

39Related to Versions 1, 2, 3, 4, 5, 5b, 5bPy3, 5c, 5c_fd, 5book, 6book.

55

Draft - The making of the model

duction plan P̂ i
t and the labor productivity π; we have the required labor

force (Lit is the current one):

L̂it = P̂ i
t /π (22)

Now:

1. if L̂it = Lit nothing has to be done;

2. if L̂it > Lit, the entrepreneur is hiring with the limit of the number of
unemployed workers;

3. if L̂it < Lit, the entrepreneur is firing the workers in excess.

The code is:

def hireFireWithProduction(self):

workers do not hire/fire
if self.agType == "workers": return

to decide to hire/fire we need to know the number of employees
the value is calcutated on the fly, to be sure of accounting for
modifications coming from outside
(nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.)

laborForce0=gvf.nx.degree(common.g, nbunch=self) + \
1 # +1 to account for the entrepreneur itself

required labor force
laborForceRequired=int(

self.plannedProduction/common.laborProductivity)

no action
if laborForce0 == laborForceRequired: return

hire
if laborForce0 < laborForceRequired:

n = laborForceRequired - laborForce0
tmpList=[]
for ag in self.agentList:
if ag != self:

if ag.agType=="workers" and not ag.employed:
tmpList.append(ag)

if len(tmpList) > 0:
k = min(n, len(tmpList))
shuffle(tmpList)
for i in range(k):

hired=tmpList[i]
hired.employed=True
gvf.colors[hired]="Aqua"
gvf.createEdge(self, hired)
#self, here, is the hiring firm

count edges (workers) of the firm, after hiring (the values is

56

Draft - The making of the model

recorded, but not used directly)
self.numOfWorkers=gvf.nx.degree(common.g, nbunch=self)
nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
print "entrepreneur", self.number, "has", \

self.numOfWorkers, "edge/s after hiring"

fire
if laborForce0 > laborForceRequired:

n = laborForce0 - laborForceRequired

the list of the employees of the firm
entrepreneurWorkers=gvf.nx.neighbors(common.g,self)
#print "entrepreneur", self.number, "could fire", entrepreneurWorkers

#the list returnes by nx is unstable as order
entrepreneurWorkers = mySort(entrepreneurWorkers)

if len(entrepreneurWorkers) > 0: # has to be, but ...
shuffle(entrepreneurWorkers)
for i in range(n):

fired=entrepreneurWorkers[i]

gvf.colors[fired]="OrangeRed"
fired.employed=False

common.g_edge_labels.pop((self,fired))
common.g.remove_edge(self, fired)

count edges (workers) after firing (recorded, but not used
directly)
self.numOfWorkers=gvf.nx.degree(common.g, nbunch=self)
nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
print "entrepreneur", self.number, "has", \

self.numOfWorkers, "edge/s after firing"

An important technical detail is the use of the function mySort to avoid in-
consistencies in the order of the agents returned by the graph of the networks
as workers of the entrepreneur. Different orders would produce different sets
of fired workers, becoming different sets of potential entrepreneurs and pro-
ducing different sequences of events in the simulation.

Why the differences in the order of the list of the agents? The graph is
managed by networkX, which is using internally a dictionary structure, whose
order is neither defined in any way in Python, nor constant from execution
to execution.40

40 With version 3.6+, as we can see at https://docs.python.org/3.6/whatsnew/3.6.html#
new-dict-implementation, within the “CPython implementation improvements”, the dict type
has been reimplemented. Specifically, at least in CPython (which is the more diffused Python
implementation):

The order-preserving aspect of this new implementation is considered an imple-
mentation detail and should not be relied upon (this may change in the future, but it
is desired to have this new dict implementation in the language for a few releases be-

57

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation

Draft - The making of the model

The list, in our case, contains the addresses of the instances of the agents.
A simple sort of this list does not give us a stable order, due to the fact that
the addresses and their order can change form a run to another.

For these reasons we use here a custom function to sort the list, using the
internal number of the agents, to reorder them.41

As a related consequence, we have to keep in mind to avoid duplicated num-
bers: in the Oligopoly model the entrepreneurs can switch to workers and
vice versa, so the numbers assigned to the entrepreneurs start from 1 and
those assigned to the workers from 1001 (see the file workers.txtx).
The code of the function mySort is:

def mySort(ag):
if ag==[]: return []
numAg=[]
for a in ag:

numAg.append((a.number,a))
numAg.sort()
agSorted=[]
for i in range(len(numAg)):

agSorted.append(numAg[i][1])
return agSorted

4.5 Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c
5c_fd, 5book, 6book

4.5.1 toEntrepreneurV3

• With the method (or command) toEntrepreneurV3,42 sent to workers,
the agent, being a worker, decides to become an entrepreneur at time t,
if its employer has a relative profit (reported to the total of the costs) ≥ a
given threshold at time t − 1. The threshold is retrieved from the variable
thresholdToEntrepreneur.

fore changing the language spec to mandate order-preserving semantics for all current
and future Python implementations; this also helps preserve backwards-compatibility
with older versions of the language where random iteration order is still in effect, e.g.
Python 3.5).

So dict structures, with Python 3.6 are order-preserving, but this new implementation is consid-
ered an implementation detail and should not be relied upon.

41A related marginal problem, not eliminated, is the order in plotting the nodes in the graph
plot: in the area where the nodes are superimposed, we can see the nodes exactly in the same
position in every run, but differently placed as layer in the foreground/background sequence.

42Related to Version 3, 4, 5.

58

Draft - The making of the model

The decision is a quite rare one, so we have to pass a higher level thresh-
old, that we define as absoluteBarrierToBecomeEntrepreneur; the value
is defined in commonVar.py and shown via parameters.py file.

This parameter represents a potential max number of new entrepreneurs in
each cycle.

Internally, it works in the following way: given an absolute value as number
workers that actually become entrepreneurs, we transform that value in a
probability, dividing it by the total number of the agents, used as an adaptive
scale factor.

The agent changes its internal type, position (not completely at the left as
the original entrepreneurs, but if it was an entrepreneur moved to worker and
coming back, it goes completely at the left) and color and it deletes the previ-
ous edge to the entrepreneur/employer. Finally, it starts counting the k peri-
ods of extra costs (to k is assigned the value common.ExtraCostsDuration,
in the measure stated in common.newEntrantExtraCosts.

The code in Agent.py is, with update to Networkx 2.0+:

#to entrepreneurV3
def toEntrepreneurV3(self):

if self.agType != "workers" or not self.employed: return

if random() <= common.absoluteBarrierToBecomeEntrepreneur:
#myEntrepreneur = gvf.nx.neighbors(common.g, self)[0] with nx 2.0
myEntrepreneur = list(common.g.neighbors(self))[0]
myEntrepreneurProfit=myEntrepreneur.profit
myEntrepreneurCosts=myEntrepreneur.costs
if myEntrepreneurProfit/myEntrepreneurCosts >= \
common.thresholdToEntrepreneur:
print "Worker %2.0f is now an entrepreneur (previous firm relative profit %4.2f)" %\

(self.number, myEntrepreneurProfit/myEntrepreneurCosts)
common.g.remove_edge(myEntrepreneur, self)

#originally, it was a worker
if self.xPos>0:gvf.pos[self]=(self.xPos-15,self.yPos)
#originally, it was an entrepreneur
else:gvf.pos[self]=(self.xPos,self.yPos)
colors at http://www.w3schools.com/html/html_colornames.asp
gvf.colors[self]="LawnGreen"
self.agType="entrepreneurs"
self.employed=True
self.extraCostsResidualDuration=common.extraCostsDuration

4.5.2 toWorkerV3

• With the method (or command) toWorkerV3,43 an entrepreneur moves to
be an unemployed worker if her relative profit (reported to the total of the

43Related to Version 3, 4, 5book, 6book.

59

Draft - The making of the model

costs) at time t is ≤ a given threshold in t. The threshold is retrieved from
the variable thresholdToWorker.

The agent changes its internal type, position (not completely at the right
as the original workers, but if it was a worker moved to entrepreneur and
coming back, it goes completely at the right) and color and it deletes the
previous edge to the workers/employee if any.

The code in Agent.py is, with correction to NetworkX 2.0+:

#to workersV3
def toWorkerV3(self):

if self.agType != "entrepreneurs": return

#check for newborn firms
try:

self.costs
except:

return

if self.profit/self.costs <= common.thresholdToWorker:
print "I’m entrepreneur %2.0f and my relative profit is %4.2f" %\

(self.number, self.profit/self.costs)

the list of the employees of the firm, IF ANY
#entrepreneurWorkers = gvf.nx.neighbors(common.g, self) with nx 2.0
entrepreneurWorkers = list(common.g.neighbors(self))
print "entrepreneur", self.number, "has", len(entrepreneurWorkers),\
"workers to be fired"

if len(entrepreneurWorkers) > 0:
for aWorker in entrepreneurWorkers:

gvf.colors[aWorker]="OrangeRed"
aWorker.employed=False

common.g.remove_edge(self, aWorker)

self.numOfWorkers=0

#originally, it was an entrepreneur
if self.xPos<0:gvf.pos[self]=(self.xPos+15,self.yPos)
#originally, it was a worker
else:gvf.pos[self]=(self.xPos,self.yPos)
colors at http://www.w3schools.com/html/html_colornames.asp
gvf.colors[self]="OrangeRed"
self.agType="workers"
self.employed=False

60

Draft - The making of the model

4.6 Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c
5c_fd, 5book

4.6.1 adaptProductionPlan until Version 5

• The method (or command) adaptProductionPlan,44 sent to entrepreneurs,
orders to the ith firm to set its production plan for the current period to their
(equal, being i here not relevant) fraction of the total demand of the previous
period, corrected with a random uniform relative correction in the interval
−k to +k, reported in the prologue as:
Random component of planned production.

This method works for time > 1.

Being P̂ i
t the planned production of firm i, we have:

– if uit ≥ 0

P̂ i
t =

Dt−1

Nentrepreneurs

(1 + uit) (23)

– if uit < 0

P̂ i
t =

Dt−1

Nentrepreneurs

/(1 + |uit|) (24)

with uit ∼ U(−k, k)

The code in Agent.py until Version 5 is:

adaptProductionPlan
def adaptProductionPlan(self):

if common.cycle > 1:
nEntrepreneurs = 0
for ag in self.agentList:

if ag.agType=="entrepreneurs":
nEntrepreneurs+=1

self.plannedProduction = common.totalDemandInPrevious_TimeStep \
/ nEntrepreneurs

#self.plannedProduction += gauss(0,self.plannedProduction/10)

shock= uniform(\
-common.randomComponentOfPlannedProduction,\
common.randomComponentOfPlannedProduction)

if shock >= 0:
self.plannedProduction *= (1.+shock)

if shock < 0:
shock *= -1.

44Related to Version 3, 4, 5.

61

Draft - The making of the model

self.plannedProduction /= (1.+shock)
#print self.number, self.plannedProduction

common.totalPlannedProduction+=self.plannedProduction

4.6.2 adaptProductionPlan with Version 5b, 5bPy3, 5c, 5c_fd
correction, 5book

• The method (or command) adaptProductionPlan,45 sent to entrepreneurs,
orders to the ith firm to set its production plan for the current period to their
(equal, being i here not relevant) fraction of the total demand—transformed
from its nominal value to the real one (i.e., in quantity)46—of the previous
period, corrected with a random uniform relative correction in the interval
−v to v, reported in the prologue as:
Random component of planned production.

This method works for time > 1.

Being P̂ i
t the planned production of firm i, we have:

– if uit ≥ 0

P̂ i
t =

Dt−1

pt−2

Nentrepreneurs

(1 + uit) (25)

– if uit < 0

P̂ i
t =

Dt−1

pt−2

Nentrepreneurs

/(1 + |uit|) (26)

with uit ∼ U(−v, v) and pt−2 the lagged price.47

The double lagged price correction is justified because we are considering the
production decisions at time t, which are based on the decisions of consump-
tion at t − 1, related to the income at time t − 1; these decisions are made
before the determination of the prices at t − 1 (emerging only when com-
paring the demand and the predetermined offer). If we want to evaluate the
consumption in quantity, without the effect of a too limited or too abundant

45Related to Version 5b, 5bPy3 and 5c, 5c_fd, 5book.
46The missing part until Version 5b/5bPy3/5c/5c_fd/5book was this transformation; as a

consequence, the result was partially biased, anyway with limited effects being our prices always
around the unity; I have to thank Enrico Minardi, a student of mine, for discovering the missing
operation.

47The method is applied only with t > 1, so the use of the lagged price starts at time 2, when
pt−2 would be the undefined p0 value; as a simplification we use pt−1 in this case, look at the
code.

62

Draft - The making of the model

offer, we have to use t−2 prices. This construction will be eliminated with a
future version of the model, with the atomic interaction of buyers and sellers
in a dispersed way.

The code in Agent.py from Version 5b/5bPy3/5c/5c_fd/5book is:

adaptProductionPlan
def adaptProductionPlan(self):

if common.cycle > 1:
nEntrepreneurs = 0
for ag in self.agentList:

if ag.agType=="entrepreneurs":
nEntrepreneurs+=1

#previous period price
#print ("++++++++++++++++++++++", common.ts_df.price.values[-1])
#print ("&&&&&&&&&&&&&&&&&&&&&&",len(common.ts_df.price.values))

if len(common.ts_df.price.values)==1:
previuosPrice=common.ts_df.price.values[-1] # t=2

if len(common.ts_df.price.values)>1:
previuosPrice=common.ts_df.price.values[-2] # t>2

#NB adapt acts from t>1

self.plannedProduction = (common.totalDemandInPrevious_TimeStep / \
previuosPrice) \
/ nEntrepreneurs

#self.plannedProduction += gauss(0,self.plannedProduction/10)

shock= uniform(\
-common.randomComponentOfPlannedProduction,\
common.randomComponentOfPlannedProduction)

if shock >= 0:
self.plannedProduction *= (1.+shock)

if shock < 0:
shock *= -1.
self.plannedProduction /= (1.+shock)
#print self.number, self.plannedProduction

common.totalPlannedProduction+=self.plannedProduction
#print "entrepreneur", self.number, "plan", self.plannedProduction,\
"total", common.totalPlannedProduction

4.6.3 setMarketPriceV3

• The method (or command) setMarketPriceV3,48 sent to the WorldState,
orders it to evaluate the market clearing price. See below Section 4.16 and
specifically Section 4.16.3.

48Related to Version 3, 4, 5.

63

Draft - The making of the model

4.7 Methods used in Version 4, 5, 5b, 5bPy3, 5c, 5c_fd,
5bok, 6book

4.7.1 fullEmploymentEffectOnWages

The method (or command) fullEmploymentEffectOnWages,49 sent to the
WorldState, orders it to modify wages accordingly to full employment sit-
uation, in a reversible way. See below Section 4.16 and specifically Section
4.16.6.

4.7.2 randomShockToWages

The method (or command) randomShockToWages. sent to the WorldState,
orders it to randomly modify wages. See below Section 4.16 and specifically
Section 4.16.5.

This method is only used in model building, to verify the sensitivity of the
model to changes in wages.

4.7.3 incumbentActionOnWages

The method (or command) incumbentActionOnWages,50 sent to the WorldState,
orders it to modify wages for one period, accordingly to the attempt of cre-
ating an entry barrier when new firms are observed into the market.

As a consequence, wage measure contains a variable addendum, set to 0 as
regular value and modified temporary by this method.

See below Section 4.16 and specifically Section 4.16.7.

4.8 Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd,
5book, 6book

4.8.1 workTroubles

• The method (or command) workTroubles,51 is sent to the entrepreneurs,
For each entrepreneur at time t, so for each firm i, we generate a shock ψi,t >
0 due to work troubles, with probability pψ (set for all the entrepreneurs via

49Related to Version 4, 5, 6book.
50Related to Version 4, 5, 6book.
51Related to Version 5, 6book.

64

Draft - The making of the model

the schedule.txt file)52 and value uniformly distributed between VΨ/2 and
VΨ. The shock reduces the production of firm i in a relative way, as in:

Pcit = P i
t (1− ψi,t) (27)

where Pc means corrected production.

If the global logical value wageCutForWorkTroubles is true, also wages are
cut in the same proportion that the production is suffering. With w indicat-
ing the constant basic wage level, cwit is the corrected value at time t and for
firm i; the correction is superimposed to the other possible corrections (due
to full employment or to artificial barrier creation).

cwit = w(1− ψi,t) (28)

The firm variable hasTroubles takes note—via ψi,t assuming a value > 0,
being 0 otherwise—if the firm has work problems in the current time step
and the worker variable workTroubles takes note of the same amount for all
the workers of that specific firm.

Both the variable are set again to 0 in the reset step at the beginning of
each model cycle.

The code in Agent.py is:

#work troubles
def workTroubles(self):

NB this method acts with the probability set in the schedule.txt
file
if self.agType != "entrepreneurs": return

production shock due to work troubles

psiShock=uniform(common.productionCorrectionPsi/2,
common.productionCorrectionPsi)

self.hasTroubles=psiShock
print "Entrepreneur", self.number, "is suffering a reduction of "\

"production of", psiShock*100, "%, due to work troubles"

if common.wageCutForWorkTroubles:
the list of the employees of the firm
entrepreneurWorkers=gvf.nx.neighbors(common.g,self)
for aWorker in entrepreneurWorkers:
#avoiding the entrepreneur herself, as we are refering to her
network of workers
aWorker.workTroubles=psiShock
print "Worker ", aWorker.number, "is suffering a reduction of "\

"wage of", psiShock*100, "%, due to work troubles"

52SLAPP displays—in its text output—a dictionary with the method probabilities, if at least
one method is linked to a probability.

65

Draft - The making of the model

4.8.2 produceV5

• The method (or command) produceV5,53 sent to the entrepreneurs, orders
them—in a deterministic way, in each unit of time—to produce proportion-
ally to their labour force, obtaining profit Πi

t, where i identifies the firm and
t the time.

Lit is the number of workers of firm i at time t, and also the number of its
links. We add 1 to Lit, to account for the entrepreneur as a worker. π is
the laborProductivity, with its value set to 1 in common variable space,
currently not changing with t. P i

t is the production of firm i at time t.

The production is:
P i
t = π(Lit + 1) (29)

The production is corrected for work troubles (as in section 4.8.1) calculating
the corrected value Pcit with:

Pcit = P i
t (1− ψi,t) (30)

The production (corrected or not) of the ith firm is added to the total pro-
duction of the time step, in the variable totalProductionInA_TimeStep of
the common space.
The code is:

produce
def produce(self):

this is an entrepreneur action
if self.agType == "workers": return

to produce we need to know the number of employees
the value is calcutated on the fly, to be sure of accounting for
modifications coming from outside
(nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.)

laborForce=gvf.nx.degree(common.g, nbunch=self) + \
1 # +1 to account for the entrepreneur itself

productivity is set to 1 in the benginning
self.production = common.laborProductivity * \

laborForce

totalProductionInA_TimeStep
common.totalProductionInA_TimeStep += self.production

53Related to Version 5book, 6book.

66

Draft - The making of the model

We calculate the laborForce, i.e. Lit, counting the number of links or edges
from the firm to the workers. We prefer this ‘on the fly” evaluation to the
internal variable self.numOfWorkers, to be absolutely sure of accessing the
last datum in case of modifications coming from other procedures. E.g., a
random subtraction or addition of workers to firms coming simulating some
kind of shock . . .

4.9 Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd,
5book

4.9.1 planConsumptionInValueV5

• The method (or command) planConsumptionInValueV5,54 sent to entrepreneurs
or workers, produces the following evaluations, detailed in commonVar.py
file.

Consumption behavior with

Ci = ak + bkYi + u (31)

with u ∼ N (0, common.consumptionRandomComponentSD).

The individual i can be:

1. an entrepreneur, with Yi = profiti,t−1 + wage;

2. an employed worker, with Yi = wage and the special 55 case Yi = wcit,
with wcit defined in eq.28;

3. an unemployed workers, with Yi = socialWelfareCompensation.

The ak and bk values are set via the file commonVar.py and reported in
output, when the program starts, via the parameters.py.

The code in Agent.py is:

compensation
def planConsumptionInValueV5(self):

self.consumption=0
#case (1)
#Y1=profit(t-1)+wage NB no negative consumption if profit(t-1) < 0
this is an entrepreneur action
if self.agType == "entrepreneurs":

self.consumption = common.a1 + \

54Related to Version 5
55Activated if the common value wageCutForWorkTroubles is true

67

Draft - The making of the model

common.b1 * (self.profit + common.wage) + \
gauss(0,common.consumptionRandomComponentSD)

if self.consumption < 0: self.consumption=0
#profit, in V2, is at time -1 due to the sequence in schedule2.xls

#case (2)
#Y2=wage
if self.agType == "workers" and self.employed:
the followin if/else structure is for control reasons because if
not common.wageCutForWorkTroubles we do not take in account
self.workTroubles also if != 0; if = 0 is non relevant in any case
if common.wageCutForWorkTroubles:
self.consumption = common.a2 + \

common.b2 * common.wage*(1.-self.workTroubles) + \
gauss(0,common.consumptionRandomComponentSD)

#print "worker", self.number, "wage x",(1.-self.workTroubles)
else:
self.consumption = common.a2 + \

common.b2 * common.wage + \
gauss(0,common.consumptionRandomComponentSD)

#case (3)
#Y3=socialWelfareCompensation
if self.agType == "workers" and not self.employed:

self.consumption = common.a3 + \
common.b3 * common.socialWelfareCompensation + \
gauss(0,common.consumptionRandomComponentSD)

#update totalPlannedConsumptionInValueInA_TimeStep
common.totalPlannedConsumptionInValueInA_TimeStep+=self.consumption
#print "C sum", common.totalPlannedConsumptionInValueInA_TimeStep

self.consumptionPlanningInCycleNumber=common.cycle

The conclusion updates the common value totalPlannedConsumptionInValueInA_TimeStep,
cleaned at each reset, i.e., at each time step in modelActions.txt.

The totalPlannedConsumptionInValueInA_TimeStepmeasure will be then
randomly corrected within the setMarketPriceV3 method of the WorldState
meta-agent, see page 82.

4.9.2 evaluateProfitV5

• The method (or command) evaluateProfitV5,56 sent to the entrepreneurs,
orders them to calculate their profit. Being P i

t the production and the la-
bor force Lit measured via the network connecting the entrepreneur to her
workers plus 1 to take in account the entrepreneur herself.

The use of P i
t , the actual production of the entrepreneurs, accounts both for

the production plan decided with adaptProductionPlan, page 61, and for
56Related to Version 5.

68

Draft - The making of the model

the limits in hiring, if any, as in hireFireWithProduction, page 55. The
sum of all the actual productions of each entrepreneur is used, as at page 82,
in setMarketPriceV3.

The method has been improved in version 2, to manage extra costs for
the new entrant firms, but keeping safe the backward compatibility of the
method.

pt is the price, clearing the market at time t and it is calculated by the
abstract item WorldState via the method setMarketPrice, as explained in
Section 4.16.

w is the wage per employee and time unit, set to 1.0 in common variable
space, not changing with t, but the case of the important events of:

– wage rise due both to full employment (Subsection 4.7.1) and

– to the creation of barriers against new entrants (Subsection 4.7.3).

C are extra costs for new entrant firms. They are calibrated to assure the
effectivness of the action described in Subsection 4.7.3, but in a non deter-
ministic way, thanks to the movements in prices.

If the common variable wageCutForWorkTroubles is set to True the costs
determination takes in account the reduction in the wages (but the wage of
the entrepreneur, not changing).

Considering the presence of work troubles (see subsection 4.8.1) the deter-
mination of the clearing price, as at page 82, can signal an increase in the
equilibrium price, due to the lacking production.

The (relative) shock ψi,t > 0 due to work troubles is defined in subsection
4.8.1.

In presence of work troubles the firm has to accept a reduction of its price,
to compensate its customers for having undermined the confidence in the
implicit commitment of producing a given quantity (the production plan,
specified in subsection 4.4.1).

That penalty value, as a relative measure, is in common as penaltyValue
and here shortly as pv. Locally, pvit, for the firm i at time t, is set to pv if
ψi,t > 0; otherwise (ψi,t = 0) is set to 0.

The profit evaluation, if wageCutForWorkTroubles is set to True, is:

Πi
t = pt(1− pv1

t)P
i
t − (w − ψi,t)(Lit − 1)− 1w − C (32)

being 1w the wage of the entrepreneur.

69

Draft - The making of the model

If wageCutForWorkTroubles is set to False, the result is:

Πi
t = pt(1− pvit)P i

t − wLit − C (33)

The experiments run in April 2017 for the final version for the Italian eco-
nomic journal have the penalty value pvit set to 0.

The new entrant firms have extra costs C to be supported, retrieved in XC
variables, but only for k periods, as stated in commonVar.py and activated
by method toEntrepreneur.
The code is:

calculateProfit
def evaluateProfitV5(self):

this is an entrepreneur action
if self.agType == "workers":

return

backward compatibily to version 1
try:

XC = common.newEntrantExtraCosts
except BaseException:

XC = 0
try:

k = self.extraCostsResidualDuration
except BaseException:

k = 0

if k == 0:
XC = 0

if k > 0:
self.extraCostsResidualDuration -= 1

the number of pruducing workers is obtained indirectly via
production/laborProductivity
print self.production/common.laborProductivity

how many workers, not via productvity due to possible troubles
in production

laborForce = gvf.nx.degree(common.g, nbunch=self) + \
1 # +1 to account for the entrepreneur herself

the followin if/else structure is for control reasons because if
not common.wageCutForWorkTroubles we do not take in account
self.workTroubles also if != 0; if = 0 is non relevant in any case
if common.wageCutForWorkTroubles:

self.costs = (common.wage - self.hasTroubles) \

* (laborForce - 1) \
+ common.wage * 1 + \
XC

above, common.wage * 1 is for the entrepreur herself

else:
self.costs = common.wage * laborForce + \

XC

70

Draft - The making of the model

print "I’m entrepreur", self.number, "costs are",self.costs

penalty Value
pv = 0
if self.hasTroubles > 0:

pv = common.penaltyValue

the entrepreur sells her production, which is contributing - via
totalActualProductionInA_TimeStep, to price formation
self.profit = common.price * (1. - pv) * self.production - self.costs
print("I’m entrepreur", self.number, "my price is ",

common.price * (1. - pv))

individual data collection
creating the dataframe
try:

common.dataCounter
except BaseException:

common.dataCounter=-1

try:
common.firm_df

except BaseException:
common.firm_df = pd.DataFrame(

columns=[
’production’,
’profit’])

print("\nCreation of fhe dataframe of the firms (individual data)\n")

common.dataCounter+=1
#common.firm_df.set_value(common.dataCounter,\ deprecated since pandas 0.21
col=common.firm_df.columns.get_loc(’production’)
common.firm_df.at[common.dataCounter,\

col]=self.production
#common.firm_df.set_value(common.dataCounter,\ deprecated since pandas 0.21
col=common.firm_df.columns.get_loc(’profit’)
common.firm_df.ix[common.dataCounter,\

col]=self.profit

common.totalProfit += self.profit

4.10 Methods used in Versions 0, 1, 2, 3, 4

4.10.1 produce

• The method (or command) produce,57 sent to the entrepreneurs, orders
them—in a deterministic way, in each unit of time—to produce proportion-
ally to their labour force, obtaining profit Πi

t, where i identifies the firm and
t the time.

57Related to Versions 0, 1, 2. 3, 4, 5

71

Draft - The making of the model

Lit is the number of workers of firm i at time t, and also the number of its
links. We add 1 to Lit, to account for the entrepreneur as a worker. π is
the laborProductivity, with its value set to 1 in common variable space,
currently not changing with t. P i

t is the production of firm i at time t.

The production is:
P i
t = π(Lit + 1) (34)

The production of the ith firm is added to the total production of the time
step, in the variable totalProductionInA_TimeStep of the common space.
The code is:

produce
def produce(self):

this is an entrepreneur action
if self.agType == "workers": return

to produce we need to know the number of employees
the value is calcutated on the fly, to be sure of accounting for
modifications coming from outside
(nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.)

laborForce=gvf.nx.degree(common.g, nbunch=self) + \
1 # +1 to account for the entrepreneur itself

productivity is set to 1 in the benginning
self.production = common.laborProductivity * \

laborForce

totalProductionInA_TimeStep
common.totalProductionInA_TimeStep += self.production

We calculate the laborForce, i.e. Lit, counting the number of links or edges
from the firm to the workers. We prefer this ‘on the fly” evaluation to the
internal variable self.numOfWorkers, to be absolutely sure of accessing the
last datum in case of modifications coming from other procedures. E.g., a
random subtraction or addition of workers to firms coming simulating some
kind of shock . . .

72

Draft - The making of the model

4.11 Methods used in Versions 0, 1, 2, 3, 4, 5, 5b,
5bPy3, 5c, 5c_fd, 5book

4.11.1 fireIfProfit

• The method (or command) fireIfProfit,58 sent to the entrepreneurs,
orders them—in a probabilistic way (50% of probability in versions 0, 1, 2;
in version 3 and 4, considering that the probability is set directly in the
schedule.xls file, we eliminate the effect of this command setting the prob-
ability to 0.0159), in each unit of time—to fire a worker (choosing her/him
randomly in the list of the employees of the firm) if the profit (last calculation,
i.e., current period as shown in the sequence contained in schedule.xls) is
less than the value firingThreshold (temporary: 0):

Πi
t < firingThreshold→ fire (35)

fireIfProfit
def fireIfProfit(self):

workers do not fire
if self.agType == "workers": return

if self.profit>=common.firingThreshold: return

the list of the employees of the firm
entrepreneurWorkers=gvf.nx.neighbors(common.g,self)
#print "entrepreneur", self.number, "could fire", entrepreneurWorkers

#the list returnes by nx is unstable as order
entrepreneurWorkers = mySort(entrepreneurWorkers)

if len(entrepreneurWorkers) > 0:
fired=entrepreneurWorkers[randint(0,len(entrepreneurWorkers)-1)]

gvf.colors[fired]="OrangeRed"
fired.employed=False

common.g_edge_labels.pop((self,fired))
common.g.remove_edge(self, fired)

count edges (workers) after firing (recorded, but not used
directly)
self.numOfWorkers=gvf.nx.degree(common.g, nbunch=self)
nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
print "entrepreneur", self.number, "has", \

self.numOfWorkers, "edge/s after firing"

See page 57 for the technical detail of the function mySort.
58Used in Versions 0, 1, 2, (temporary) 3, 4 and 5, 5b, 5bPy3, 5c, 5c_fd, 5book.
59Being 0 not allowed, see the Reference Handbook, subsection The detailed scheduling mech-

anism within the Model (AESOP level)

73

Draft - The making of the model

4.12 Methods used in Versions 1, 2, 3, 4

4.12.1 evaluateProfit

• The method (or command) evaluateProfit,60 sent to the entrepreneurs,
orders them to calculate their profit. Being P i

t the production and π the
labor productivity, we have the labor force Lit = P i

t /π

The use of P i
t , the actual production of the entrepreneurs, accounts both for

the production plan decided with adaptProductionPlan, page 61, and for
the limits in hiring, if any, as in hireFireWithProduction, page 55. The
sum of all the actual productions of each entrepreneur is used, as at page 82,
in setMarketPriceV3.

The method has been improved in version 2, to manage extra costs for
the new entrant firms, but keeping safe the backward compatibility of the
method.

pt is the price, clearing the market at time t and it calculated by the abstract
item WorldState via the method setMarketPrice, as explained in Section
4.16.

w is the wage per employee and time unit, set to 1.0 in common variable
space, not changing with t. C are extra costs for new entrant firms.

The profit evaluation is:

Πi
t = ptP

i
t − wLit − C (36)

The new entrant firms have extra costs to be supported, retrieved in XC
variables, but only for k periods, as stated in commonVar.py and activated
by method to toEntrepreneur.
The code is:

calculateProfit
def evaluateProfit(self):

this is an entrepreneur action
if self.agType == "workers": return

backward compatibily to version 1
try: XC=common.newEntrantExtraCosts
except: XC=0
try: k=self.extraCostsResidualDuration
except: k=0

if k==0: XC=0
if k>0: self.extraCostsResidualDuration-=1

60Related to Versions 1, 2, 3, 4.

74

Draft - The making of the model

the number of pruducing workers is obtained indirectly via
production/laborProductivity
#print self.production/common.laborProductivity
self.costs=common.wage * (self.production/common.laborProductivity) + \

XC

the entrepreur sells her production, which is contributing - via
totalActualProductionInA_TimeStep, to price formation
self.profit=common.price * self.production - self.costs

common.totalProfit+=self.profit

4.12.2 planConsumptionInValue

• The method (or command) planConsumptionInValue,61 sent to entrepreneurs
or workers, produces the following evaluations, detailed in commonVar.py
file.

The method (or command) planConsumptionInValue operates both with
the entrepreneurs and the workers, producing the following evaluations,
using the parameters reported, as an example, into Table 1 of Mazzoli et al.
(2017). The description below is unique for both the cases.

The resulting consumption behavior if the agent i at time t is:

Ci
t = aj + bjY

i
t + u (37)

with u ∼ N (0, common.consumptionRandomComponentSD).

Considering w as wage, as above, and P for profit, the individual i can be :

• case j = 1: an entrepreneur, with Y i
t = P i

t−1 + wt;

• case j = 2: an employed worker at time t, with Yi = w and the special 62

case Y i
t = wcit, with wcit defined in eq. 28;

• case j = 3: an unemployed worker at time t, with Y i
t = sw (sw = social

wage, as a welfare intervention).

The aj and bj values are reported in the initial output of each run; we set
them via the parameters.py.

The code in Agent.py is:
61Related to Version 2, 3, 4
62Activated if the parameter cut also the wages is set to yes

75

Draft - The making of the model

compensation
def planConsumptionInValue(self):

self.consumption=0
#case (1)
#Y1=profit(t-1)+wage NB no negative consumption if profit(t-1) < 0
this is an entrepreneur action
if self.agType == "entrepreneurs":

self.consumption = common.a1 + \
common.b1 * (self.profit + common.wage) + \
gauss(0,common.consumptionRandomComponentSD)

if self.consumption < 0: self.consumption=0
#profit, in V2, is at time -1 due to the sequence in schedule2.xls

#case (2)
#Y2=wage
if self.agType == "workers" and self.employed:

self.consumption = common.a2 + \
common.b2 * common.wage + \
gauss(0,common.consumptionRandomComponentSD)

#case (3)
#Y3=socialWelfareCompensation
if self.agType == "workers" and not self.employed:

self.consumption = common.a3 + \
common.b3 * common.socialWelfareCompensation + \
gauss(0,common.consumptionRandomComponentSD)

#update totalPlannedConsumptionInValueInA_TimeStep
common.totalPlannedConsumptionInValueInA_TimeStep+=self.consumption
#print "C sum", common.totalPlannedConsumptionInValueInA_TimeStep

The individual Ci
t updates totalPlannedConsumptionInValueInA_TimeStep

(a common value), cleaned at each reset, i.e., at each new time step.

The totalPlannedConsumptionInValueInA_TimeStepmeasure will be then
randomly corrected within the setMarketPriceV3 method of the WorldState
meta-agent, see page 82.

4.13 Methods used in Version 2 only

4.13.1 toEntrepreneur

• With the method (or command) toEntrepreneur,63 sent to workers, the
agent, being a worker, decides if to become an entrepreneur at time t, if its
employer has a profit ≥ a given threshold in t. The threshold is retrieved
from the variable thresholdToEntrepreneur.

The agent changes its internal type, position (not completely at the left as
the original entrepreneurs, but if it was an entrepreneur moved to worker and

63Related to Version 2.

76

Draft - The making of the model

coming back, it goes completely at the left) and color and it deletes the previ-
ous edge to the entrepreneur/employer. Finally, it starts counting the k peri-
ods of extra costs (to k is assigned the value common.ExtraCostsDuration,
in the measure stated in common.newEntrantExtraCosts.

The code in Agent.py is:

myEntrepreneur=gvf.nx.neighbors(common.g, self)[0]
myEntrepreneurProfit=myEntrepreneur.profit
if myEntrepreneurProfit >= common.thresholdToEntrepreneur:

print "I’m %2.0f and myEntrepreneurProfit is %4.2f" %\
(self.number, myEntrepreneurProfit)

common.g.remove_edge(myEntrepreneur, self)
self.xPos-=15
gvf.pos[self]=(self.xPos,self.yPos)
colors at http://www.w3schools.com/html/html_colornames.asp
gvf.colors[self]="LawnGreen"
self.agType="entrepreneurs"
self.employed=True
self.extraCostsResidualDuration=common.extraCostsDuration

4.13.2 toWorker

• With the method (or command) toWorker,64 an entrepreneur moves to be
an unemployed worker if its profit at time t is ≤ a given threshold in t. The
threshold is retrieved from the variable thresholdToWorker.

The agent changes its internal type, position (not completely at the right
as the original workers, but if it was a worker moved to entrepreneur and
coming back, it goes completely at the right) and color and it deletes the
previous edge to the workers/employee if any.

The code in Agent.py is:

if self.profit <= common.thresholdToWorker:
print "I’m entrepreneur %2.0f and my profit is %4.2f" %\

(self.number, self.profit)

the list of the employees of the firm, IF ANY
entrepreneurWorkers=gvf.nx.neighbors(common.g,self)
print "entrepreneur", self.number, "has", len(entrepreneurWorkers),\
"workers to be fired"

if len(entrepreneurWorkers) > 0:
for aWorker in entrepreneurWorkers:

gvf.colors[aWorker]="OrangeRed"
aWorker.employed=False

common.g.remove_edge(self, aWorker)

64Related to Version 2.

77

Draft - The making of the model

self.numOfWorkers=0

#originally, it was an entrepreneur
if self.xPos<0:gvf.pos[self]=(self.xPos+15,self.yPos)
#originally, it was a worker
else:gvf.pos[self]=(self.xPos,self.yPos)
colors at http://www.w3schools.com/html/html_colornames.asp
gvf.colors[self]="OrangeRed"
self.agType="workers"
self.employed=False

4.13.3 setMarketPriceV2

• The method (or command) setMarketPriceV2,65 sent to the WorldState,
orders it to evaluate the market clearing price. This method uses two com-
mon variables:

– totalProductionInA_TimeStep, generated by the agents (entrepreneurs),
via produce;

– totalPlannedConsumptionInValueInA_TimeStep, generated by the agents
(entrepreneurs and workers) via planConsumptionInValue.

See below the Section 4.16 and specifically Section 4.16.2.

4.14 Methods used in Version 1 only

4.14.1 setMaketPriceV1

• The method (or command) setMarketPriceV1,66 sent to the WorldState,
orders it to evaluate the market clearing price. See below Section 4.16 and
specifically Section 4.16.1.

4.15 Methods used in Version 0 only

4.15.1 evaluateProfitV0

• The method (or command) evaluateProfitV0,67 sent to the entrepreneurs,
orders them to calculate their profit. Being P i

t the production and π the labor
productivity, we have the labor force Lit = P i

t /π

65Related to Version 2.
66Related to Version 1.
67Related to Version 0.

78

Draft - The making of the model

R is revenuesOfSalesForEachWorker, set to 1.005 in common variable space,
not changing with t; w is the wage per employee and time unit, set to 1.0
in common variable space, not changing with t. uit ∼ N (0, 0.05) is a random
normal addendum.

The profit evaluation is:

Πi
t = Lit(R− w) + uit (38)

The code is:

calculateProfit
def evaluateProfitV0(self):

this is an entrepreneur action
if self.agType == "workers": return

the number of producing workers is obtained indirectly via
production/laborProductivity
#print self.production/common.laborProductivity
self.profit=(self.production/common.laborProductivity) * \

(common.revenuesOfSalesForEachWorker - \
common.wage) + gauss(0,0.05)

4.15.2 hireIfProfit

• The method (or command) hireIfProfit,68 sent to the entrepreneurs,
orders them—in a probabilistic way (50% of probability in Version 0 case), in
each unit of time—to hire a worker (random choosing her/him in a temporary
list of unemployed people) if the profit (last calculation, i.e., current period
as shown in the sequence contained in schedule.xls) is a than the value
hiringThreshold (temporary: 0):

Πi
t > hiringThreshold→ hire (39)

As first attempt the hiringThreshold is 0 (in commonVar.py). We can
modify this internal value, as others, while the simulation is running, via the
WorldState feature, introduced below.
The code of the hireIfProfit method is:

hireIfProfit
def hireIfProfit(self):

workers do not hire
if self.agType == "workers": return

if self.profit<=common.hiringThreshold: return

68Used in Version 0.

79

Draft - The making of the model

tmpList=[]
for ag in self.agentList:

if ag != self:
if ag.agType=="workers" and not ag.employed:

tmpList.append(ag)

if len(tmpList) > 0:
hired=tmpList[randint(0,len(tmpList)-1)]

hired.employed=True
gvf.colors[hired]="Aqua"
gvf.createEdge(self, hired) #self, here, is the hiring firm

count edges (workers) of the firm, after hiring (the values is
recorded, but not used directly)
self.numOfWorkers=gvf.nx.degree(common.g, nbunch=self)
nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
print "entrepreneur", self.number, "has", \

self.numOfWorkers, "edge/s after hiring"

4.16 Other features in scheduling

.
We also have two more sophisticates structures: the WorldState feature and

the macros .

• Running a project—if we define the WorldState.py file—at the beginning
of the output, we read:

World state has been created.

What does it mean?

The WorldState class interacts with the agents; we use a unique instance of
the class.

The variables managed via WordState have to be added, with their methods,
within the instance of class, with set/get methods for each variable.

In Agent.py we can ask to the WorldState, via get, for the values of the
variables.

With the oligopoly project we made a step ahead, asking to the Worl-
State to make a specific calculations about the whole state of the world.
This capability has been incorporated in SLAPP since version 1.11 and has
been definitively set with the reengineering of WorldState in version 1.33 of
SLAPP.

80

Draft - The making of the model

The normal use has in Col. B a value and in Col. C the method used to
set that value into the WorldState; it will be retrieved by the agents using a
symmetric get method.69

If in Col. B we have the expression computationalUse70, the content of Col.
C is a special method making world calculations.

A few examples, with their code, are below.

4.16.1 setMarketPriceV1 as in WorldState, with details

• The method (or command) setMarketPriceV1,71 sent to the WorldState,
orders it to evaluate the market clearing price.

Setting the aggregate-demand Dt as equal to the production:

Dt =
∑
i

P i
t (40)

We have the demand function, with pt as price:

pt = a+ bDt (41)

With the planned production coming from a Poisson distribution as in Eq.
20, considering ν set to 4, we can set two consistent points (p,D) as (1, 20)
and (0.8, 30) obtaining:

pt = 1.4− 0.02Dt (42)

The resulting code in WorldState.py is:

set market price
def setMarketPriceV1(self):

to have a price around 1
common.price= 1.4 - 0.02 * common.totalProductionInA_TimeStep
print "Set market price to ", common.price
common.price10=common.price*10 #to plot

69These methods have to be implemented by the user, see the example in the basic project.
70the expression specialUse is still working, but it is deprecated.
71Introduced above as related to Version 1 only.

81

Draft - The making of the model

4.16.2 setMarketPriceV2, as in WorldState, with details

• The method (or command) setMarketPriceV2,72 sent to the WorldState,
orders it to evaluate the market clearing price considering each agent behav-
ior.

Having:
pt = Dt/Ot (43)

with pt clearing market price at time t; Dt demand in value at time t; Ot

offer in quantity (the production) at time t.

As defined above (p. 78), the method uses two common variables:

– totalProductionInA_TimeStep, generated by the agents (entrepre-
neurs), via produce;

– totalPlannedConsumptionInValueInA_TimeStep, generated by the
agents (entrepreneurs and workers) via planConsumptionInValue.

The resulting code in WorldState.py is:

set market price V2
def setMarketPriceV2(self):

common.price= common.totalPlannedConsumptionInValueInA_TimeStep / \
common.totalProductionInA_TimeStep

print "Set market price to ", common.price
common.price10=common.price*10 #to plot

4.16.3 setMarketPriceV3, as in WorldState, with details

• The method (or command) setMarketPriceV3,73 sent to the WorldState,
orders it to evaluate the market clearing price considering each agent behav-
ior and an external shock, potentially large.

We introduce a shock Ξ uniformly distributed between −L and +L where L
is a rate on base 1, e.g., 0.10. To keep the effect as symmetric, we have the
following equations determining the clearing price:

If the shock Ξ is (≥ 0):

pt =
Dt(1 + Ξ)

Ot

(44)

72Introduced above as related to Version 2 only.
73Introduced above as related to Version 3, 4 and 5.

82

Draft - The making of the model

if the shock Ξ is (< 0):

pt =
Dt/(1 + Ξ)

Ot

(45)

with pt clearing market price at time t; Dt demand in value at time t; Ot

offer in quantity (the production) at time t.
The Ξ parameter is reported in the prologue of the execution as
Total demand relative random shock, uniformly distributed between −Ξ% and
+Ξ%.
As defined above (p. 78), the method uses two common variables:

– totalProductionInA_TimeStep, generated by the agents (entrepre-
neurs), via produce;

– totalPlannedConsumptionInValueInA_TimeStep, generated by the agents
(entrepreneurs and workers) via planConsumptionInValue.

The resulting code in WorldState.py is:

set market price V3
def setMarketPriceV3(self):

shock0 = random.uniform(-common.maxDemandRelativeRandomShock,
common.maxDemandRelativeRandomShock)

shock = shock0

print("\n-------------------------------------")

if shock >= 0:
totalDemand = \

common.totalPlannedConsumptionInValueInA_TimeStep * \
(1 + shock)

common.price = (common.totalPlannedConsumptionInValueInA_TimeStep *
(1 + shock)) \

/ common.totalProductionInA_TimeStep
print("Relative shock (symmetric) ", shock0)
print("Set market price to ", common.price)
common.totalDemandInPrevious_TimeStep is necessary for
adaptProductionPlan and adaptProductionPlanV6
common.totalDemandInPrevious_TimeStep=totalDemand

if shock < 0:
shock *= -1. # always positive, being added to the denominator
totalDemand = \

common.totalPlannedConsumptionInValueInA_TimeStep / \
(1 + shock)

common.price = (common.totalPlannedConsumptionInValueInA_TimeStep /
(1 + shock)) \

/ common.totalProductionInA_TimeStep
print("Relative shock (symmetric) ", shock0)
print("Set market price to ", common.price)
common.totalDemandInPrevious_TimeStep is necessary for
adaptProductionPlan and adaptProductionPlanV6
common.totalDemandInPrevious_TimeStep=totalDemand

print("-------------------------------------\n")

83

Draft - The making of the model

4.16.4 setMarketPriceV6, as in WorldState, with details

• The method (or command) setMarketPriceV6,74 sent to the WorldState,
orders it to evaluate the market clearing price considering each agent behav-
ior and an external shock, potentially large in the pre-Hayekian phase and
successively to record the mean and the standard deviation to the Hayekian
prices in each cycle.

About the pre-Hayekian phase look at Section 4.16.3. In the code reported
here, the new part uses the function coded as:

def checkHayekianPrices(a):
list a not empty
if a!=[]: m = statistics.mean(a)
else: m = -100 # -100 will not appear in graphs
and with at least one element
if len(a)>1: sd = statistics.stdev(a)
else: sd=-100 # -100 will not appear in graphs
return (m,sd)

strictly related to the code of the method actOnMarketPlace of agent.py.

The resulting code in WorldState.py is:

set market price V6
def setMarketPriceV6(self):

print("\n-------------------------------------")

if common.cycle < common.startHayekianMarket:

shock0 = random.uniform(-common.maxDemandRelativeRandomShock,
common.maxDemandRelativeRandomShock)

shock = shock0

if shock >= 0:
totalDemand = \

common.totalPlannedConsumptionInValueInA_TimeStep * \
(1 + shock)

common.price=(common.totalPlannedConsumptionInValueInA_TimeStep\

*(1 + shock)) \
/ common.totalProductionInA_TimeStep

print("Relative shock (symmetric) ", shock0)
print("Set market price to ", common.price)
common.totalDemandInPrevious_TimeStep is necessary for
adaptProductionPlan and adaptProductionPlanV6
common.totalDemandInPrevious_TimeStep=totalDemand

if shock < 0:
shock *= -1. # always positive, being added to the denominator
totalDemand = \

common.totalPlannedConsumptionInValueInA_TimeStep / \
(1 + shock)

common.price=(common.totalPlannedConsumptionInValueInA_TimeStep \

74Introduced above as related to Version 6book, jumping in numbering from 3 to 6.

84

Draft - The making of the model

/(1 + shock)) \
/ common.totalProductionInA_TimeStep

print("Relative shock (symmetric) ", shock0)
print("Set market price to ", common.price)
common.totalDemandInPrevious_TimeStep is necessary for
adaptProductionPlan and adaptProductionPlanV6
common.totalDemandInPrevious_TimeStep=totalDemand

Hayekian phase
else:

(common.price, common.hPriceSd)=checkHayekianPrices(\
common.HayekianMarketTransactionPriceList_inACycle)

print("Hayekian phase (NA as not available values)")
if common.price != -100: print("Mean price ",common.price)
else: print("Mean price NA")
if common.hPriceSd != -100: print("Mean price s.d.",common.hPriceSd)
else: print("Mean price s.d. NA")

print("-------------------------------------\n")

4.16.5 randomShocksToWages, as in WorldState, with details

• The method is used only in the model building phase, to verify the sensitivity
of the model to changes in wages.

Being w the wage per employee defined in the setup, so w1, from t = 2 we
have:

– if ut ≥ 0
wt = wt−1(1 + ut) (46)

– if ut < 0
wt = wt−1/(1 + |ut|) (47)

with ut ∼ U(−k, k) and k tentatively set to 0.10 or 10%.

The code in WorldState.py is:

random shock to wages (temporary method to experiment with wages)
def randomShockToWages(self):

k=0.10
shock= uniform(-k,k)

if shock >= 0:
common.wage *= (1.+shock)

if shock < 0:
shock *= -1.
common.wage /= (1.+shock)

85

Draft - The making of the model

4.16.6 fullEmploymentEffectOnWages, as in WorldState, with de-
tails

As a first step, the wage level is reset to its base value, but the case of a
wage raise in this same cycle (coming from another procedure). In the same
cycle we can have different wage raises, with cumulative effects.

Being Ut the unemployment rate at time t, ζ the unemployment threshold
to recognize the full employment situation, s the proportional increase step
(reversible) of the wage level and wt the wage level at time t (being w0 the
initial level), we have: {

wt = w0(1 + s) if Ut ≤ ζ

wt = w0 if Ut > ζ
(48)

The code in WorldState.py is:

shock to wages (full employment case)
def fullEmploymentEffectOnWages(self):

wages: reset wage addendum, if any
excluding the case of a raise made in this cycle by another procedure
if common.wageCorrectionInCycle != common.cycle:

common.wage = common.wageBase

employed people
peopleList = common.g.nodes()
totalPeople = len(peopleList)
totalEmployed = 0
for p in peopleList:

if p.employed:
totalEmployed += 1

print totalPeople, totalEmployed
unemploymentRate = 1. - float(totalEmployed) / \

float(totalPeople)
if unemploymentRate <= common.fullEmploymentThreshold:

common.wage *= (1 + common.wageStepInFullEmployment)
common.wageCorrectionInCycle=common.cycle

4.16.7 incumbentActionOnWages, as in WorldState, with details

As a first step, the wage level is reset to its base value, but the case of a
wage raise in this same cycle (coming from another procedure). In the same
cycle we can have different wage raises, with cumulative effects.

The current number of entrepreneurs HE
t is calculated from the network at

the end (so the superscript E) of a cycle and the previous values HB
i are ex-

tracted from the structural dataframe, containing the data at the beginning

86

Draft - The making of the model

of each period (see collectStructuralData at page 13). In HB
i the super-

script B means: at the beginning of the cycle i. Pay attention, HB
i = HE

i−1.

Consistently, H
E
t

HB
t
−1 measures the relative increment/decrement of the num-

ber of the entrepreneurs in cycle t.

The wage level has two components, mutually exclusive:

1. the effects of full employment on wages, as in Section 4.16.6;

2. the effect described in this Section about the actions of the incumbent
oligopolists, which are strategically increasing wages to create an arti-
ficial barrier against new entrants; the new entrepreneurs suffer tem-
porary extra costs, so for them the wage increment can generate so
relevant losses to produce their bankruptcy.
We have here two levels: K as the (relative) threshold of entrepreneur
presence to determine the reaction on wages and k as the relative in-
crement of wages.
How to measure the increment in the number of the entrepreneurs?

(a) If we compare HE
t and HB

t , we have a simple direct measure,
(b) but if we have a continuous series of small increments—all with

Ht

HB
t
− 1 ≤ K, so under the threshold—the overall effect is invisible.

In case 2a:
wt = w0(1 + k) if

HE
t

HB
t

− 1 > K

wt = w0 if
HE
t

HB
t

− 1 ≤ K

(49)

In case 2b:

first of all, we define the reference level, or RL, as a dynamic value, calculat-
ing, at any time t:75

R
L
t = HB

t if
HE
t−1

RL
t−1

− 1 > K

RL
t = RL

t−1 otherwise
(50)

75We could consider to have the first condition in the form: RL
t = HB

t if HB
t − HB

t−1 ≤
0 or

HE
t−1

RL
t−1
− 1 > K.

87

Draft - The making of the model

remembering that in t = 1 (starting time), RL
0 = HB

1 and HB
0 = HE

0 = HB
1 .

As a consequence, always in case 2b:
wt = w0(1 + k) if

HE
t

RL
t

− 1 > K

wt = w0 if
HE
t

RL
t

− 1 ≤ K

(51)

The code in WorldState.py is:

incumbents rising wages as an entry barrier
def incumbentActionOnWages(self):

wages: reset wage addendum, if any
excluding the case of a raise made in this cycle (by another procedure)
if common.wageCorrectionInCycle != common.cycle:

common.wage = common.wageBase
common.wageAddendum=0 # for the final print if in use

E and B final letters in the name are consistent with the symbols
in Section "incumbentActionOnWages, as in WorldState, with details"
current number of entrepreneurs
peopleList = common.g.nodes()
nEntrepreneursE = 0
for p in peopleList:

if p.agType == "entrepreneurs":
nEntrepreneursE += 1

nEntrepreneursE = float(nEntrepreneursE)

no cumulative measure
as in the Section incumbentActionOnWages, as in WorldState, with details
in the Reference
if not common.cumulativelyMeasuringNewEntrantNumber:
previous number of entrepreneurs
values in str_df at the beginning of each cycle (B as beginning)
nEntrepreneursB = common.str_df.iloc[-1, 0] # indexing Python style

pos. -1 is the last one

print nEntrepreneurs, nEntrepreneurs0

wages: set
if nEntrepreneursB >= 1:

if nEntrepreneursE / nEntrepreneursB - 1 > \
common.maxAcceptableOligopolistRelativeIncrement:
common.wageAddendum = common.wage *\

common.temporaryRelativeWageIncrementAsBarrier
common.wage += common.wageAddendum
common.wageCorrectionInCycle=common.cycle

cumulative measure
as in the Section incumbentActionOnWages, as in WorldState, with details
in the Reference
if common.cumulativelyMeasuringNewEntrantNumber:
#print("///////// ","common.cycle",common.cycle)
if common.cycle == 1:

values in str_df at the beginning of each cycle

88

Draft - The making of the model

nEntrepreneursB_1 = common.str_df.iloc[-1, 0]#indexing Py. style
nEntrepreneursB = common.str_df.iloc[-1, 0]# pos. -1 is
nEntrepreneursE_1 = common.str_df.iloc[-1, 0]
ReferenceLevel_1 = common.str_df.iloc[-1, 0]# the last one
common.ReferenceLevel = common.str_df.iloc[-1, 0]

common to avoid a reference error
else:

nEntrepreneursB_1 = common.str_df.iloc[-2, 0]#indexing Py. style
nEntrepreneursB = common.str_df.iloc[-1, 0]
nEntrepreneursE_1 = common.str_df.iloc[-1, 0]
ReferenceLevel_1 = common.ReferenceLevel

#if nEntrepreneursB - nEntrepreneursB_1 <= 0 or \
if nEntrepreneursE_1 / ReferenceLevel_1 - 1 > \

common.maxAcceptableOligopolistRelativeIncrement:
common.ReferenceLevel = nEntrepreneursB

else:
common.ReferenceLevel = ReferenceLevel_1

wages: set
if common.ReferenceLevel >= 1:

if nEntrepreneursE / common.ReferenceLevel - 1 > \
common.maxAcceptableOligopolistRelativeIncrement:
common.wageAddendum = common.wage *\

common.temporaryRelativeWageIncrementAsBarrier
common.wage += common.wageAddendum
common.wageCorrectionInCycle=common.cycle

"""
print("/// ","nEntrepreneursE",nEntrepreneursE)
print("/// ","nEntrepreneursE_1",nEntrepreneursE_1)
print("/// ","nEntrepreneursB",nEntrepreneursB)
print("/// ","nEntrepreneursB_1",nEntrepreneursB_1)
print("/// ","ReferenceLevel",common.ReferenceLevel)
print("/// ","ReferenceLevel_1",ReferenceLevel_1)
print("/// ","wageAddendum",common.wageAddendum)
"""

4.16.8 Macros

• Just a memo: we also have the possibility of using macros contained in
separated sheets of the schedule.xls file (not used presently here).

To know more, use the SLAPP (Swarm-Like Protocol in Python) Reference
Handbook on line at https://github.com/terna/SLAPP, looking for the
item macros within the Index.

89

https://github.com/terna/SLAPP

Bibliography

Boero, R., Morini, M., Sonnessa, M. and Terna, P. (2015). Agent-based Models of
the Economy Agent-based Models of the Economy – From Theories to Applica-
tions . Palgrave Macmillan, Houndmills.
URL https://www.palgrave.com/gp/book/9781137339805

Boettke, P. J. (1990). The theory of spontaneous order and cultural evolution in
the social theory of FA Hayek . In «Cultural Dynamics», vol. 3(1), pp. 61–83.

Bowles, S., Kirman, A. and Sethi, R. (2017). Retrospectives: Friedrich Hayek and
the Market Algorithm. In «Journal of Economic Perspectives», vol. 31(3), pp.
215-30.
URL http://www.aeaweb.org/articles?id=10.1257/jep.31.3.215

Hayek, F. A. (1994). Hayek on Hayek: an autobiographical dialogue, vol. edited
by Stephen Kresge and Leif Wenar. University of Chicago Press:.

Lewis, P. (2014). Hayek: from Economics as Equilibrium Analysis to Economics as
Social Theory . In R. Garrison and N. Barry, eds., Elgar Companion to Hayekian
Economics . Edward Elgar Publishing, pp. 195–223.
URL https://ssrn.com/abstract=2546259

Mazzoli, M., Morini, M. and Terna, P. (2017). Business Cycle in a Macromodel
with Oligopoly and Agents’ Heterogeneity: An Agent-Based Approach. In «Ital-
ian Economic Journal», pp. 1–29.
URL http://rdcu.be/tlE6

— (2019). Rethinking Macroeconomics with Endogenous Market Structure. Cam-
bridge University Press.

90

https://www.palgrave.com/gp/book/9781137339805
http://www.aeaweb.org/articles?id=10.1257/jep.31.3.215
https://ssrn.com/abstract=2546259
http://rdcu.be/tlE6

Index

.txtx, 9

action container, 17
actOnMarketPlace, 42
adapting the production plan, 61, 62
adaptProductionPlan, 61
adaptProductionPlan Version 5b, 5bPy3,

5c, 5c_fd, 5book, 62
adaptProductionPlanV6, 26
AEA Data Availability Policy, 5
AESOP, 17
agent creation, 9
agent number 1, 10
Agents and reset action, 10
applyRationallyTheRateOfChange, 37, 43

collectStructuralData, 13
collectTimeSeries, 13
computationalUse in world state, 81
correcting production due to work prob-

lems, 65
correcting wage level due to work prob-

lems, 65

databaseWizard.ipynb, 18
demand, 81
demand function with numeric coefficients,

81
demand functionV1, 81
demand functionV2, 82
demand functionV3 with a negative shock,

83
demand functionV3 with a positive shock,

82

evaluateProfit, 74
evaluateProfitV0, 78
evaluateProfitV5, 68
evaluateProfitV6, 49
extension .txtx, 9

fireIfProfit, 73
full employment, 86
full Hayekian paradigm, 24
fullEmploymentEffectOnWages, 64

Graphic wizard, 18

Hayekian market, 22
Hayekian paradigm, 24
hireFireWithProduction, 55
hireIfProfit, 79

incumbentActionOnWages, 64, 86
initialBuyPriceCorrection1, 34
initialBuyPriceCorrection2, 34
initialSellPriceCorrection1, 34
initialSellPriceCorrection2, 34

jump in full HM, 37
jump in quasi HM, 39

macros, 80, 89
makeProductionPlan, 54
marketPriceV2, 78
Methods used in Version 0, 78
Methods used in Version 1 only, 78
Methods used in Version 2 only, 76
Methods used in Version 3, 4, 5, 5b,

5bPy3, 5c, 5c_fd, 5book, 61

91

Draft - The making of the model

Methods used in Version 3, 4, 5, 5b,
5bPy3, 5c, 5c_fd, 5book, 6book,
58

Methods used in Version 4, 5, 5b, 5bPy3,
5c, 5c_fd, 5book, 6book, 64

Methods used in Version 5, 5b, 5bPy3,
5c, 5c_fd, 5book, 67

Methods used in Version 5, 5b, 5bPy3,
5c, 5c_fd, 5book, 6book, 64

Methods used in Version 6book only, 26
Methods used in Versions 0, 1, 2, 3, 4,

71
Methods used in Versions 0, 1, 2, 3, 4,

5, 5b, 5bPy3, 5c, 5c_fd, 5book,
73

Methods used in Versions 1, 2, 3, 4, 74
Methods used in Versions 1, 2, 3, 4, 5,

5b, 5bPy3, 5c, 5c_fd, 5book, 6book,
54

Model, 11
modelStep, 13
modSellPriceJumpFHM, 37
mySort, function, 57, 73

negative consumption, 30
nextSellPricesQHM, 38
Nu calculation in V.3, 55

Observer, 11
oligopoly outline, 23
operating sets of agents, 11
outline, 23

pandas, 13
parameter modification, 14
parameters, 7
partial correlation, 18
penalty value, 50, 69
planConsumptionInValue, 75
planConsumptionInValueV5, 67
planConsumptionInValueV6, 29

planned consumption random correction,
68, 76, 82

planned consumptions, 29, 67, 75
planned consumptions plus, 30
predefining a default project, 6
price corrections in the Hayekian phase,

44
produce, 71
produceV5 for 5book, 6book versions, 66
production plan, 54
production version 0, 66, 72
profit version 0, 79
profit version 1, 74
profit version 5, 50, 69, 70
profit version 6, 50

quasi Hayekian paradigm, 24

random number use and Python 2 vs. 3,
21

randomCorrectionToWages, 85
randomShockToWages, 64
readingCsvOutput.ipynb, 18
readingCsvOutput_par_corr_BW.ipynb,

18
report about residual consumption in value

and unsold production in quan-
tity, 45

required labor force, 56
reset, 15
reset wages, 86
result replication, 5, 21
runningBuyPriceDownCorrection1, 44
runningBuyPriceDownCorrection2, 44
runningBuyPriceUpCorrection1, 44
runningBuyPriceUpCorrection2, 44
runningSellPriceDownCorrection1, 45
runningSellPriceDownCorrection2, 45
runningSellPriceUpCorrection1, 45
runningSellPriceUpCorrection2, 45

schedule, 11, 14

92

Draft - The making of the model

scheduling (micro way) the model, 19
scheduling the model, 17
scheduling the observer, 11
set of agents, 10
setInitialPricesHM, 32
setMarketPriceV1, 78, 81
setMarketPriceV2, 82
setMarketPriceV3, 63, 82
setMarketPriceV6, 53, 84
special action use, 14
specialUse in world state, 81
Swarm, 17

takeovers, 25
toEntrepreneur, 76
toEntrepreneurV3, 58
toEntrepreneurV6, 53
Toolsl, 18
toWorker, 77
toWorkerV3, 59
types of agents, 10

V0, 19
V1, 19
V2, 19
V3, 20
V4, 20
V5, V5b, V5bPy3, V5c, V5c_fd, V5book,

21
V6b, 25
V6book, 22
visualizeNet, 13
visualizePlot, 13

work troubles, 64
workTroubles for 5book, 6book versions,

64
world state, 80
WorldState, 79, 80

93

	The oligopoly project: the making of the simulation model
	The agents and their sets
	Agents and reset action
	Sets of agents

	Macro scheduling
	The scheduling mechanism at the level of the Observer
	The scheduling mechanism at the level of the Observer: using the special action feature to modify the parameters while the model is running

	The scheduling mechanism at the level of the Model
	The detailed scheduling mechanism within the Model (AESOP level)

	Tools
	readingCsvOutput.ipynb
	readingCsvOutput_par_corr_BWter.ipynb
	databaseWizard.ipynb

	Micro scheduling: the AESOP level
	Model versions via the AESOP level in scheduling
	Version 0 (GitHub: V0 sub releases tab), preliminary step
	Version 1, random production as engine (GitHub: release V1&2)
	Version 2 (GitHub: , random production as engine (GitHub: release V1&2)
	Version 3 (GitHub: release V3)
	Version 4 (GitHub: release V4)
	Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book (GitHub: versions V5bPy3, V5c, V5bP2_fd, V5c_fd, V5book)
	Version 6book, the simplified Hayekian market (currently, as the master in Github, release V6 is definitively named V6book)
	Version 6b, with takeovers and big entrepreneurs)

	The items of our AESOP level in scheduling
	Methods used in Version 6book only
	adaptProductionPlanV6
	planConsumptionInValueV6
	setInitialPricesHM, Hayekian Market
	nextSellPriceJumpFHM, Full Hayekian Market
	nextSellPricesQHM, Quasi Hayekian Market
	actOnMarketPlace
	evaluateProfitV6
	setMarketPriceV6
	toEntrepreneurV6

	Methods used in Versions 1, 2, 3, 4, 5, 5b, 5bPy3, 5c, 5c_fd, 5book, 6book
	makeProductionPlan
	hireFireWithProduction

	Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c 5c_fd, 5book, 6book
	toEntrepreneurV3
	toWorkerV3

	Methods used in Version 3, 4, 5, 5b, 5bPy3, 5c 5c_fd, 5book
	adaptProductionPlan until Version 5
	adaptProductionPlan with Version 5b, 5bPy3, 5c, 5c_fd correction, 5book
	setMarketPriceV3

	Methods used in Version 4, 5, 5b, 5bPy3, 5c, 5c_fd, 5bok, 6book
	fullEmploymentEffectOnWages
	randomShockToWages
	incumbentActionOnWages

	Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book, 6book
	workTroubles
	produceV5

	Methods used in Version 5, 5b, 5bPy3, 5c, 5c_fd, 5book
	planConsumptionInValueV5
	evaluateProfitV5

	Methods used in Versions 0, 1, 2, 3, 4
	produce

	Methods used in Versions 0, 1, 2, 3, 4, 5, 5b, 5bPy3, 5c, 5c_fd, 5book
	fireIfProfit

	Methods used in Versions 1, 2, 3, 4
	evaluateProfit
	planConsumptionInValue

	Methods used in Version 2 only
	toEntrepreneur
	toWorker
	setMarketPriceV2

	Methods used in Version 1 only
	setMaketPriceV1

	Methods used in Version 0 only
	evaluateProfitV0
	hireIfProfit

	Other features in scheduling
	setMarketPriceV1 as in WorldState, with details
	setMarketPriceV2, as in WorldState, with details
	setMarketPriceV3, as in WorldState, with details
	setMarketPriceV6, as in WorldState, with details
	randomShocksToWages, as in WorldState, with details
	fullEmploymentEffectOnWages, as in WorldState, with details
	incumbentActionOnWages, as in WorldState, with details
	Macros

	Bibliography
	Index

